首页> 外文OA文献 >Mismatched Training Data Enhancement for Automatic Recognition of Children’s Speech using DNN-HMM
【2h】

Mismatched Training Data Enhancement for Automatic Recognition of Children’s Speech using DNN-HMM

机译:不正确的训练数据增强功能,无法使用DNN-HMM自动识别儿童的语音

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increasing profusion of commercial automatic speech recognition technology applications has been driven by big-data techniques, using high quality labelled speech datasets. Children's speech has greater time and frequency domain variability than typical adult speech, lacks good large scale training data, and presents difficulties relating to capture quality. Each of these factors reduces the performance of systems that automatically recognise children's speech.udIn this paper, children's speech recognition is investigated using a hybrid acoustic modelling approach based on deep neural networks and Gaussian mixture models with hidden Markov model back ends. We explore the incorporation of mismatched training data to achieve a better acoustic model and improve performance in the face of limited training data, as well as training data augmentation using noise. We also explore two arrangements for vocal tract length normalisation and a gender-based data selection technique suitable for training a children's speech recogniser.
机译:大数据技术使用高质量的标记语音数据集推动了商业自动语音识别技术应用的日益增多。儿童语音比典型的成人语音具有更大的时域和频域可变性,缺乏良好的大规模训练数据,并且存在捕获质量方面的困难。这些因素都会降低自动识别儿童语音的系统的性能。 ud本文中,使用基于深度神经网络和高斯混合模型以及隐马尔可夫模型后端的混合声学建模方法,研究了儿童语音识别。我们探索了不匹配的训练数据的合并,以实现更好的声学模型并在面对有限的训练数据以及使用噪声增强训练数据的情况下提高性能。我们还探讨了声道长度归一化的两种安排以及适合于训练儿童语音识别器的基于性别的数据选择技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号