首页> 外文OA文献 >Inducing decision trees with an ant colony optimization algorithm
【2h】

Inducing decision trees with an ant colony optimization algorithm

机译:用蚁群优化算法推导决策树

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Decision trees have been widely used in data mining and machine learning as a comprehensible knowledge representation. While ant colony optimization (ACO) algorithms have been successfully applied to extract classification rules, decision tree induction with ACO algorithms remains an almost unexplored research area. In this paper we propose a novel ACO algorithm to induce decision trees, combining commonly used strategies from both traditional decision tree induction algorithms and ACO. The proposed algorithm is compared against three decision tree induction algorithms, namely C4.5, CART and cACDT, in 22 publicly available data sets. The results show that the predictive accuracy of the proposed algorithm is statistically significantly higher than the accuracy of both C4.5 and CART, which are well-known conventional algorithms for decision tree induction, and the accuracy of the ACO-based cACDT decision tree algorithm.
机译:决策树已被广泛地用于数据挖掘和机器学习中,作为一种可理解的知识表示。尽管蚁群优化(ACO)算法已成功应用于提取分类规则,但使用ACO算法进行决策树归纳仍然是一个尚未探索的研究领域。在本文中,我们结合了传统决策树归纳算法和ACO的常用策略,提出了一种新颖的ACO决策树算法。在22个可公开获得的数据集中,将该算法与三种决策树归纳算法C4.5,CART和cACDT进行了比较。结果表明,该算法的预测精度在统计学上明显高于著名的传统决策树算法C4.5和CART的精度,以及基于ACO的cACDT决策树算法的精度。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号