首页> 外文OA文献 >A statistical study of time dependent reliability degradation of nanoscale MOSFET devices
【2h】

A statistical study of time dependent reliability degradation of nanoscale MOSFET devices

机译:纳米级MOSFET器件随时间变化的可靠性下降的统计研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Charge trapping at the channel interface is a fundamental issue that adversely affects the reliability of metal-oxide semiconductor field effect transistor (MOSFET) devices. This effect represents a new source of statistical variability as these devices enter the nano-scale era. Recently, charge trapping has been identified as the dominant phenomenon leading to both random telegraph noise (RTN) and bias temperature instabilities (BTI). Thus, understanding the interplay between reliability and statistical variability in scaled transistors is essential to the implementation of a ‘reliability-aware’ complementary metal oxide semiconductor (CMOS) circuit design. In order to investigate statistical reliability issues, a methodology based on a simulation flow has been developed in this thesis that allows a comprehensive and multi-scale study of charge-trapping phenomena and their impact on transistor and circuit performance. The proposed methodology is accomplished by using the Gold Standard Simulations (GSS) technology computer-aided design (TCAD)-based design tool chain co-optimization (DTCO) tool chain. The 70 nm bulk IMEC MOSFET and the 22 nm Intel fin-shape field effect transistor (FinFET) have been selected as targeted devices.ududThe simulation flow starts by calibrating the device TCAD simulation decks against experimental measurements. This initial phase allows the identification of the physical structure and the doping distributions in the vertical and lateral directions based on the modulation in the inversion layer’s depth as well as the modulation of short channel effects. The calibration is further refined by taking into account statistical variability to match the statistical distributions of the transistors’ figures of merit obtained by measurements. The TCAD simulation investigation of RTN and BTI phenomena is then carried out in the presence of several sources of statistical variability. The study extends further to circuit simulation level by extracting compact models from the statistical TCAD simulation results. These compact models are collected in libraries, which are then utilised to investigate the impact of the BTI phenomenon, and its interaction with statistical variability, in a six transistor-static random access memory (6T-SRAM) cell. At the circuit level figures of merit, such as the static noise margin (SNM), and their statistical distributions are evaluated. The focus of this thesis is to highlight the importance of accounting for the interaction between statistical variability and statistical reliability in the simulation of advanced CMOS devices and circuits, in order to maintain predictivity and obtain a quantitative agreement with a measured data. The main findings of this thesis can be summarised by the following points:ududBased on the analysis of the results, the dispersions of VT and ΔVT indicate that a change in device technology must be considered, from the planar MOSFET platform to a new device architecture such as FinFET or SOI. This result is due to the interplay between a single trap charge and statistical variability, which has a significant impact on device operation and intrinsic parameters as transistor dimensions shrink further. udThe ageing process of transistors can be captured by using the trapped charge density at the interface and observing the VT shift. Moreover, using statistical analysis one can highlight the extreme transistors and their probable effect on the circuit or system operation. udThe influence of the passgate (PG) transistor in a 6T-SRAM cell gives a different trend of the mean static noise margin (
机译:通道界面处的电荷捕获是一个基本问题,会对金属氧化物半导体场效应晶体管(MOSFET)器件的可靠性产生不利影响。随着这些设备进入纳米时代,这种效应代表了统计变异性的新来源。最近,电荷陷阱已被识别为导致随机电报噪声(RTN)和偏置温度不稳定性(BTI)的主要现象。因此,了解缩放晶体管的可靠性与统计可变性之间的相互作用对于实现“可靠性感知”互补金属氧化物半导体(CMOS)电路设计至关重要。为了研究统计可靠性问题,本文开发了一种基于模拟流程的方法,该方法可以对电荷陷阱现象及其对晶体管和电路性能的影响进行全面而多尺度的研究。通过使用基于黄金标准仿真(GSS)技术的基于计算机辅助设计(TCAD)的设计工具链协同优化(DTCO)工具链,可以完成所提出的方法。选择了70 nm体积的IMEC MOSFET和22 nm Intel鳍形场效应晶体管(FinFET)作为目标器件。 ud ud仿真流程首先根据实验测量值校准了器件TCAD仿真平台。这个初始阶段可以根据反型层深度的调制以及短沟道效应的调制来识别垂直和横向的物理结构和掺杂分布。通过考虑统计差异来进一步完善校准,以匹配通过测量获得的晶体管品质因数的统计分布。然后,在存在多个统计变异性来源的情况下,对RTN和BTI现象进行TCAD仿真研究。通过从统计TCAD仿真结果中提取紧凑模型,该研究进一步扩展到电路仿真级别。这些紧凑的模型收集在库中,然后用于研究六晶体管静态随机存取存储器(6T-SRAM)单元中BTI现象的影响及其与统计变异性的相互作用。在电路级评估品质因数,例如静态噪声裕度(SNM)及其统计分布。本文的重点是强调在高级CMOS器件和电路的仿真中考虑统计可变性和统计可靠性之间的相互作用的重要性,以保持可预测性并获得与测量数据的定量一致性。本文的主要发现可以归纳为以下几点: ud ud基于结果的分析,VT和ΔVT的离散表明从平面MOSFET平台到新的MOSFET必须考虑器件技术的变化。设备架构,例如FinFET或SOI。此结果归因于单个陷阱电荷与统计可变性之间的相互作用,随着晶体管尺寸的进一步缩小,这会对器件操作和固有参数产生重大影响。 ud通过使用界面处捕获的电荷密度并观察VT偏移,可以捕获晶体管的老化过程。而且,使用统计分析可以突出极端晶体管及其对电路或系统操作的可能影响。 ud在6T-SRAM单元中的门控(PG)晶体管的影响给出了平均静态噪声容限(

著录项

  • 作者

    Hussin Razaidi;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号