首页> 外文OA文献 >A III-V channel field effect transistor for non-classical CMOS: process optimisation for improved gate stack function
【2h】

A III-V channel field effect transistor for non-classical CMOS: process optimisation for improved gate stack function

机译:用于非经典CMOS的III-V通道场效应晶体管:工艺优化以改进栅极叠层功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

This thesis describes a collection of studies into the electrical response of a III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication process variables and the findings of those studies. As a result of this work, areas of improvement in the gate process module of a III-V heterostructure MOSFET were identified.udCompared to traditional bulk silicon MOSFET design, one featuring a III-V channel heterostructure with a high-dielectric-constant oxide as the gate insulator provides numerous benefits, for example: the insulator can be made thicker for the same capacitance, the operating voltage can be made lower for the same current output, and improved output characteristics can be achieved without reducing the channel length further. It is known that transistors composed of III-V materials are most susceptible to damage induced by radiation and plasma processing. These devices utilise sub-10 nm gate dielectric films, which are prone to contamination, degradation and damage. Therefore, throughout the course of this work, process damage and contamination issues, as well as various techniques to mitigate or prevent those have been investigated through comparative studies of III-V MOS capacitors and transistors comprising various forms of metal gates, various thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer structures. udTransistors which were fabricated before this work commenced, showed problems with threshold voltage control. Specifically, MOSFETs designed for normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the results obtained during this work, it was possible to gain an understanding of why the transistor threshold voltage shifts as the gate length decreases and of what pulls the threshold voltage downwards preventing normally-off device operation.udTwo main culprits for the negative VTH shift were found. The first was radiation damage induced by the gate metal deposition process, which can be prevented by slowing down the deposition rate. The second was the layer of gold added on top of platinum in the gate metal stack which reduces the effective work function of the whole gate due to its electronegativity properties. Since the device was designed for a platinum-only gate, this could explain the below zero VTH. This could be prevented either by using a platinum-only gate, or by matching the layer structure design and the actual gate metal used for the future devices. Post-metallisation thermal anneal was shown to mitigate both these effects. However, if post-metallisation annealing is used, care should be taken to ensure it is performed before the ohmic contacts are formed as the thermal treatment was shown to degrade the source/drain contacts.udIn addition, the programme of studies this thesis describes, also found that if the gate contact is deposited before the source/drain contacts, it causes a shift in threshold voltage towards negative values as the gate length decreases, because the ohmic contact anneal process affects the properties of the underlying material differently depending on whether it is covered with the gate metal or not. In terms of surface contamination; this work found that it causes device-to-device parameter variation, and a plasma clean is therefore essential.udThis work also demonstrated that the parasitic capacitances in the system, namely the contact periphery dependent gate-ohmic capacitance, plays a significant role in the total gate capacitance. This is true to such an extent that reducing the distance between the gate and the source/drain ohmic contacts in the device would help with shifting the threshold voltages closely towards the designed values.udThe findings made available by the collection of experiments performed for this work have two major applications. Firstly, these findings provide useful data in the study of the possible phenomena taking place inside the metal/GaGdO/GaAs layers and interfaces as the result of chemical processes applied to it. In addition, these findings allow recommendations as to how to best approach fabrication of devices utilising these layers.
机译:本论文描述了对III-V MOS叠层的电响应的研究集合,这些叠层包括金属/ GaGdO / GaAs层作为制造工艺变量的函数,以及这些研究的结果。这项工作的结果是,确定了III-V异质结构MOSFET的栅极工艺模块的改进领域。 ud与传统的体硅MOSFET设计相比,具有III-V沟道异质结构和高介电常数的设计作为栅极绝缘体的氧化物具有许多优点,例如:对于相同的电容,可以使绝缘体更厚;对于相同的电流输出,可以使工作电压较低;并且可以在不进一步减小沟道长度的情况下实现改善的输出特性。众所周知,由III-V族材料组成的晶体管最容易受到辐射和等离子体处理引起的损坏。这些器件利用低于10 nm的栅极电介质膜,容易受到污染,降解和损坏。因此,在整个工作过程中,通过对III-V MOS电容器和包括各种形式的金属栅极,各种厚度的GaGdO的晶体管的比较研究,研究了工艺损坏和污染问题以及减轻或防止这些问题的各种技术。电介质和许多基于GaAs的半导体层结构。在此工作开始之前制造的晶体管显示出阈值电压控制方面的问题。具体来说,为常关(VTH> 0)设计的MOSFET的阈值电压低于零。通过在这项工作中获得的结果,可以了解为什么晶体管阈值电压会随着栅极长度的减小而发生偏移,以及为什么将阈值电压拉低以阻止器件正常工作。 ud负电压的两个主要原因发现VTH偏移。首先是栅极金属沉积工艺引起的辐射损伤,可以通过减慢沉积速率来防止辐射损伤。第二个是在栅极金属叠层中的铂上添加的金层,由于其电负性,降低了整个栅极的有效功函数。由于该器件设计用于纯铂金栅极,因此可以解释低于零的VTH。这可以通过使用纯铂栅极或将层结构设计与将来器件中使用的实际栅极金属相匹配来防止。研究表明,金属化后的热退火可以减轻这两种影响。但是,如果使用后金属化退火,则应注意确保在形成欧姆接触之前执行该步骤,因为热处理显示出会降解源极/漏极接触。 ud此外,本论文的研究程序的描述还发现,如果在源极/漏极触点之前沉积栅极触点,则随着栅极长度的减小,它会导致阈值电压向负值偏移,这是因为欧姆接触退火工艺会根据以下因素不同地影响下层材料的性能:它是否被栅极金属覆盖。在表面污染方面;这项工作发现它会导致器件之间的参数变化,因此必须进行等离子体清洁。 ud这项工作还证明了系统中的寄生电容(即与触点周边相关的栅极欧姆电容)起着重要作用。总栅极电容。在某种程度上,这是正确的,可以减小器件中栅极与源极/漏极欧姆接触之间的距离,从而有助于将阈值电压向设计值附近移动。 ud这项工作有两个主要应用。首先,这些发现为研究金属/ GaGdO / GaAs层和界面内部发生的可能现象提供了有用的数据。另外,这些发现允许关于如何最好地利用这些层来制造器件的建议。

著录项

  • 作者

    Ignatova Olesya;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号