首页> 外文OA文献 >Performance of a mixed Lagrange time delay estimation autoregressive (MLTDEAR) model for single-image signal- to-noise ratio estimation in scanning electron microscopy
【2h】

Performance of a mixed Lagrange time delay estimation autoregressive (MLTDEAR) model for single-image signal- to-noise ratio estimation in scanning electron microscopy

机译:混合拉格朗日时间延迟估计自回归(MLTDEAR)模型在扫描电子显微镜中用于单图像信噪比估计的性能

摘要

A novel technique based on the statistical autoregressive (AR) model has recently been developed as a solution to estimate the signal-to-noise ratio (SNR) in scanning electron microscope (SEM) images. In another research study, the authors also developed an algorithm by cascading the AR model with the Lagrange time delay (LTD) estimator. This technique is named the mixed Lagrange time delay estimation autoregressive (MLTDEAR) model. In this paper, the fundamental performance limits for the problem of single-image SNR estimation as derived from the Cramer-Rao inequality is presented. We compared the experimental performances of several existing methods - the simple method, the first-order linear interpolator, the AR-based estimator as well as the MLTDEAR method - with respect to this performance bound. In a few test cases involving different images, the efficiency of the MLTDEAR single-image estimation technique proved to be significantly better than that of the other three methods. Study of the effect of different SEM setting conditions that affect the autocorrelation function curve is also discussed.
机译:最近,已开发出一种基于统计自回归(AR)模型的新技术,作为估计扫描电子显微镜(SEM)图像中信噪比(SNR)的解决方案。在另一项研究中,作者还通过使用拉格朗日时间延迟(LTD)估计器级联AR模型,开发了一种算法。该技术称为混合Lagrange时延估计自回归(MLTDEAR)模型。本文提出了从Cramer-Rao不等式推导的单图像SNR估计问题的基本性能极限。在此性能范围内,我们比较了几种现有方法(简单方法,一阶线性插值器,基于AR的估计器以及MLTDEAR方法)的实验性能。在一些涉及不同图像的测试案例中,MLTDEAR单图像估计技术的效率被证明明显优于其他三种方法。还讨论了影响自相关函数曲线的不同SEM设置条件的影响的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号