首页> 外文OA文献 >The influence of shielded metal arc welding (SMAW) inter-pass temperature on the ferrite number of weld joints made on AISI 304H stainless steel
【2h】

The influence of shielded metal arc welding (SMAW) inter-pass temperature on the ferrite number of weld joints made on AISI 304H stainless steel

机译:屏蔽金属电弧焊(SMAW)层间温度对AISI 304H不锈钢制成的焊接接头的铁素体数量的影响

摘要

The research focused on the influence of welding inter-pass temperature in 304H type austenitic stainless steel weld joints in the as-welded condition. The shielded metal arc welding process was used to weld the joints. The following was evaluated: the theoretical and measured ferrite numbers, solidification mode and delta ferrite morphology, as well as the evolution and precipitation of secondary phases i.e. sigma phase in the weld, chromium carbides in the heat affected zone. After the evaluation, it was clear that the inter-pass temperature had an effect on solute distribution during cooling and subsequent calculated ferrite numbers of the welds. The calculated ferrite numbers, that were determined using the weld metal chemistry of each joint and the WRC-1992 constitution diagram, increased from FN of 1 to FN of 3 with the increase in welding inter-pass temperature from 105°C-100°C and to 195°C-200°C respectively. The measured ferrite number showed no correlation with the increases in interpass temperature. The highest measured ferrite number of 3.8 was obtained when welding at an inter-pass temperature of 135°C – 140°C which was closest to the FN of 5 required minimum, as specified by the SAPREF Refinery, to prevent solidification cracking. No solidification cracking was observed in any of the specimens evaluated in this study even though all the specimens had ferrite contents well below FN 5. This observation supports research that indicates that controlling of the primary solidification mode as delta ferrite is more important a factor in preventing solidification cracking than trying to control the actual ferrite content of the weld metal. The primary solidification mode of the weld was a combination of the austenite-ferrite (AF) to predominantly ferrite-austenite (FA) with the FA solidification mode dominating with the increase in inter-pass temperature. The nature of the carbides formed due to low temperature sensitization in the heat affected zone of the base metal changed with the increase in inter-pass temperature. The precipitated chromium carbides only formed discontinuous carbide networks at the interpass temperature of 195°C-200°C. The transformation of sigma from delta ferrite was not observed in the columnar dendritic and mushy zones of the weld metal. This research revealed the optimum welding inter-pass temperature for welding 304H austenitic stainless steel with 308H electrode to be 135-140°C.
机译:研究集中在焊接状态下304H型奥氏体不锈钢焊接接头的焊接道间温度的影响。屏蔽金属电弧焊工艺用于焊接接头。评估了以下内容:理论和测量的铁素体数量,凝固模式和δ铁素体形态,以及焊缝中第二相(即σ相)和热影响区的碳化铬的演变和析出。评估后,很明显道间温度会影响冷却过程中的溶质分布以及随后计算的焊缝铁素体数量。使用每个接头的焊接金属化学成分和WRC-1992构成图确定的计算出的铁素体数,随着焊缝道次温度从105°C-100°C的升高,从FN的1增加到FN的3。和分别达到195°C-200°C。测得的铁素体数与道间温度的升高没有关系。如SAPREF精炼厂所规定,在135°C – 140°C的道间温度下焊接时,测得的最高铁素体数为3.8,该值最接近FN最小5要求的最小值。即使所有样品的铁素体含量均远低于FN 5,在本研究中评估的任何样品中均未观察到凝固裂纹。该观察结果支持以下研究,即控制初始凝固模式为δ铁素体是防止合金凝固的重要因素。凝固裂纹比试图控制焊接金属的实际铁素体含量要大。焊缝的主要凝固模式是奥氏体-铁素体(AF)到主要是铁素体-奥氏体(FA)的组合,而FA的凝固模式主要是道间温度的升高。由于母材的热影响区中的低温敏化而形成的碳化物的性质随道次温度的升高而改变。析出的碳化铬仅在195°C-200°C的层间温度下形成不连续的碳化物网络。在焊缝金属的柱状树枝状和糊状区中未观察到σ从δ铁素体的转变。这项研究表明,采用308H电极焊接304H奥氏体不锈钢的最佳焊接道间温度为135-140°C。

著录项

  • 作者

    Ngonyoza Ntsikelelo;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号