首页> 外文OA文献 >Synthesis gas conversion into dimethyl ether and light hydrocarbons via methanol over a hybrid gold-based catalyst
【2h】

Synthesis gas conversion into dimethyl ether and light hydrocarbons via methanol over a hybrid gold-based catalyst

机译:在混合金基催化剂上通过甲醇将合成气转化为二甲醚和轻烃

摘要

Dimethyl ether (DME) has attracted an increasing amount of attention in recent years because its properties are similar to those of transportation fuels and it can be used as a substitute for diesel. The two-step process required to produce DME is a proven technology that has already been commercialised. However its capital and operating costs remain high because two different reactors are required for methanol synthesis and methanol dehydration, and a number of recycles are needed to improve the overall CO conversion in the methanol synthesis step.udA number of researchers have proposed a new process design named synthesis gas-to-DME (STD) process to overcome the limitations of the current technology for producing DME. This innovation uses one reactor for both methanol and DME synthesis, and a hybrid catalyst that leads to higher conversions of synthesis gas to DME. Both of these features reduce the capital and operating costs of the process.udIn this dissertation we record the results of thermodynamic research into the STD process, which confirm that it offers more advantages than the two-step process. The system remains pressure-sensitive, as the methanol synthesis is the most active component of the process. The experimental results also matched the trends of thermodynamic predictions of selectivities.udFor the experimental work we used a gold-based catalyst to convert synthesis gas to DME and by-products (light hydrocarbons C1 to C5). The results showed that DME selectivity is high at a low temperature (340o–380oC), but that under these conditions the catalyst exhibited a low level of activity. An increase in temperature increased the production of hydrocarbons but imposed kinetic limits on the conversion of MeOH to DME. Deactivation of the catalyst occurred at 460oC because of carbon deposits on its surface.
机译:近年来,二甲醚(DME)引起了越来越多的关注,因为它的性质类似于运输燃料,并且可以用作柴油的替代品。生产DME所需的两步过程是一种已被商业化的成熟技术。但是,由于甲醇合成和甲醇脱水需要两个不同的反应器,并且需要大量循环以改善甲醇合成步骤中的整体CO转化率,因此其资本和运营成本仍然很高。 ud许多研究人员提出了一种新工艺设计名为合成气制DME(STD)工艺,以克服当前生产DME的技术的局限性。这项创新技术使用一个反应器同时进行甲醇和DME合成,并使用一种杂化催化剂,从而提高了合成气向DME的转化率。这两个特征都减少了过程的资金和运营成本。 ud在本文中,我们将热力学研究的结果记录到了STD过程中,这证实了它比两步过程更具优势。该系统仍然对压力敏感,因为甲醇合成是该过程中最活跃的组成部分。实验结果也符合选择性热力学预测的趋势。 ud对于实验工作,我们使用了金基催化剂将合成气转化为DME和副产物(轻烃C1至C5)。结果表明,在低温(340o–380oC)下,DME的选择性很高,但在这些条件下,催化剂表现出较低的活性。温度升高增加了碳氢化合物的产量,但对MeOH转化为DME的反应施加了动力学限制。由于在其表面有碳沉积,使催化剂失活在460°C发生。

著录项

  • 作者

    Kalala Mbuyi Gabriel;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号