首页> 外文OA文献 >SOFTWARE AND HARDWARE IMPLEMENTATION OF THE NEUROMORPHIC LGN BASED IMAGE PROCESSING AND FEATURE EXTRACTION
【2h】

SOFTWARE AND HARDWARE IMPLEMENTATION OF THE NEUROMORPHIC LGN BASED IMAGE PROCESSING AND FEATURE EXTRACTION

机译:基于神经形态LGN的图像处理和特征提取的软件和硬件实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The processing of the graphical data is popular methodology of obtainingimportant information. However, there is a major drawback: it typically requireslarge computational resources. The human brain is an excellent example of theefficient image processing hardware, due to the fact the biological visual systemcan allow to easily and quickly obtain the information of the world around, suchas object identification and movement detection.In particular, there is one element of the biological visual system that has uniquefunctionality in image processing, which is lateral geniculate nucleus (LGN).Ganglion cells, which are terminated in LGN, have high sensitivity to the imagespatial intensity difference. This cell feature is used for pre-processing of thevisual data before being modulated and relayed to the main processing module,visual cortex. As a result, the processing load on cortex is reduced, due to thepre-processing of the data.The aim of the project is to develop the algorithm for visual features extraction,such as edge detection, based on the structure and properties similar to the LGN,with a possibility of the hardware model implementation. Preliminary results show the edge detection property of the proposed method. Moreover, the measured performance is comparable to other popular edge detection techniques, even exceeding expectations to small extent in the noisy environment.
机译:图形数据的处理是获得重要信息的流行方法。但是,存在一个主要缺点:它通常需要大量的计算资源。人脑是高效图像处理硬件的一个很好的例子,因为生物视觉系统可以轻松,快速地获取周围世界的信息,例如物体识别和运动检测。在图像处理中具有独特功能的生物视觉系统,即外侧膝状核(LGN)。在LGN中终止的神经节细胞对图像空间强度差异具有较高的敏感性。该单元功能用于对视觉数据进行预处理,然后再进行调制并中继到主处理模块视觉皮层。结果,由于对数据进行了预处理,因此减轻了皮质的处理负担。该项目的目的是基于类似于图像的结构和特性,开发用于视觉特征提取(如边缘检测)的算法。 LGN,有可能实现硬件模型。初步结果表明了该方法的边缘检测性能。此外,所测得的性能可与其他流行的边缘检测技术相媲美,甚至在嘈杂的环境中在某种程度上也超出了预期。

著录项

  • 作者

    Dorzhigulov Anuar;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号