首页> 外文OA文献 >Two-dimensional numerical simulation of saltating particles using granular kinetic theory
【2h】

Two-dimensional numerical simulation of saltating particles using granular kinetic theory

机译:基于颗粒动力学理论的盐化颗粒二维数值模拟

摘要

Most granular flows at environmental conditions are unsteady and exhibit a complex physical behavior. Dune formation and migration in the desert are controlled not only by the flow of saltating particles over the sand bed, but also by turbulent atmospheric airflow. In fact, sediments are transported by the atmospheric airflow within a thin layer only a few centimeters above the sandy surface. These jumping particles reach a maximum sediment mass flux level at a certain delay time (known as the “saturation time”) after the initial movement by sliding and rolling begins. Unlike sediment transport in water where the particles are lifted by the turbulent suspension, the saltating particles are kept alive in the layer mainly due to particle-particle and particle-bed collisions. In order to model this Aeolian transport of sand, Jenkins and Pasini [1] proposed a two-fluid model (one-dimensional and steady state) using Granular Kinetic Theory (GKT) to describe the solid-phase stress. The present work extends the original idea of Jenkins and Pasini [1] by using a more robust model of GKT for the kinetic/collisional contributions to the solid-phase stress tensor, together with a friction model activated for sustained contacts between particles. In addition, a standard k-ε turbulence model for the air and a drag model for the interaction between the phases are employed. A rectangular 2D geometry was chosen with a logarithmic profile for the inlet air velocity, along with an initial amount of sand at rest in the lower part of the simulation domain, resembling the particle saltating flow commonly seen in the vertical middle plane within saltation wind tunnels. This model is validated with experimental data from Liu and Dong [2] and the results given by Pasini and Jenkins [1]. A good estimation for the particle erosion and mass flux in the saltation layer is predicted, even though the profiles of mass flux and concentration within the transport layer are very thin and lower
机译:在环境条件下,大多数颗粒流是不稳定的,并表现出复杂的物理行为。沙漠中沙丘的形成和迁移不仅受到沙床上盐分颗粒的流动的控制,还受到大气湍流的控制。实际上,沉积物是通过空气流在沙层上方仅几厘米的薄层中运输的。在开始通过滑动和滚动的初始运动之后,这些跳跃粒子在某个延迟时间(称为“饱和时间”)达到最大沉积物质量通量水平。与水中的泥沙输送不同,其中的颗粒由湍流悬浮液提起,而盐化颗粒则主要由于颗粒与颗粒和床层的碰撞而在层中保持活性。为了模拟这种风沙运动,Jenkins和Pasini [1]提出了一种使用颗粒动力学理论(GKT)描述固相应力的两流体模型(一维和稳态)。目前的工作扩展了Jenkins和Pasini [1]的原始思想,它使用了更健壮的GKT模型来为固相张量提供动力/碰撞作用,并激活了一个摩擦模型来实现粒子之间的持续接触。此外,采用了空气的标准k-ε湍流模型和相之间相互作用的阻力模型。选择矩形2D几何形状,其进气速度为对数曲线,并在模拟域的下部静置了初始的沙子量,类似于盐化风洞中垂直中间平面中常见的颗粒盐化流。该模型已由Liu和Dong [2]的实验数据以及Pasini和Jenkins [1]给出的结果验证。预测了盐析层中颗粒侵蚀和质量通量的良好估计,即使传输层中的质量通量和浓度分布非常薄且较低

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号