首页> 外文OA文献 >A local field correlated and Monte Carlo based shallow neural network model for non-linear time series prediction
【2h】

A local field correlated and Monte Carlo based shallow neural network model for non-linear time series prediction

机译:基于局部相关和基于蒙特卡洛的浅层神经网络模型用于非线性时间序列预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Water resource problems currently are much more important in proper planning especially for arid regions, such as Gansu in China. For agricultural and industrial activities, prediction of groundwater status is critical. As a main branch of neural network, shallow artificial neural network models have been deployed in prediction areas such as groundwater and rainfall since late 1980s. In this paper, artificial neural network (ANN) model within a newly proposed algorithm has been developed for groundwater status forecasting. Having considered previous algorithms for ANN model in time series forecast, this new Monte Carlo based algorithm demonstrated a good result. The experiments of this ANN model in predicting groundwater status were conducted on the Heihe River area dataset, which was curated on the collected data. When compared with its original physical based model, this ANN model was able to achieve a more stable and accurate result. A comparison and an analysis of this ANN model were also presented in this paper.
机译:当前的水资源问题对于适当的计划尤为重要,特别是对于干旱地区,例如中国的甘肃。对于农业和工业活动,预测地下水状态至关重要。自1980年代末以来,作为人工神经网络的主要分支,浅层人工神经网络模型已部署在诸如地下水和降雨等预测领域。在本文中,已经开发了一种新算法中的人工神经网络(ANN)模型用于地下水状态预测。在时间序列预测中考虑了先前的ANN模型算法之后,这种基于Monte Carlo的新算法显示出了良好的效果。在黑河地区数据集上进行了该ANN模型预测地下水状况的实验,并根据收集的数据进行了整理。与原始的基于物理的模型相比,该ANN模型能够获得更加稳定和准确的结果。本文还对该神经网络模型进行了比较和分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号