首页> 外文OA文献 >Action recognition based on joint trajectory maps using convolutional neural networks
【2h】

Action recognition based on joint trajectory maps using convolutional neural networks

机译:基于卷积神经网络的联合轨迹图的动作识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, Convolutional Neural Networks (ConvNets) have shown promising performances in many computer vision tasks, especially image-based recognition. How to effectively use ConvNets for video-based recognition is still an open problem. In this paper, we propose a compact, effective yet simple method to encode spatiotemporal information carried in 3D skeleton sequences into multiple 2D images, referred to as Joint Trajectory Maps (JTM), and ConvNets are adopted to exploit the discriminative features for realtime human action recognition. The proposed method has been evaluated on three public benchmarks, i.e., MSRC-12 Kinect gesture dataset (MSRC-12), G3D dataset and UTD multimodal human action dataset (UTD-MHAD) and achieved the state-of-the-art results.
机译:最近,卷积神经网络(ConvNets)在许多计算机视觉任务中,尤其是在基于图像的识别中,显示出令人鼓舞的性能。如何有效地使用ConvNets进行基于视频的识别仍然是一个悬而未决的问题。在本文中,我们提出了一种紧凑,有效而简单的方法,将3D骨架序列中携带的时空信息编码为多个2D图像,称为联合轨迹图(JTM),并采用ConvNets来利用实时人类行为的判别特征承认。该方法已经在三个公共基准上进行了评估,即MSRC-12 Kinect手势数据集(MSRC-12),G3D数据集和UTD多模式人类动作数据集(UTD-MHAD),并获得了最新的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号