首页> 外文OA文献 >ニューラルネットワークを用いた双眼視画像装置の改良
【2h】

ニューラルネットワークを用いた双眼視画像装置の改良

机译:利用神经网络改进双目成像仪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A binocular stereovision system has been developed to estimate growth variables of a transplant population. In the present study, the image analysis system was improved by adopting a three-layered artificial neural network model (ANN model) based on a back-propagation algorithm. Inputs of the ANN model were average height, leaf area, projected leaf area, and mass volume of the transplant population obtained from the image analysis system. Outputs of the ANN model were average height, number of unfolded leaves, leaf area, and fresh and dry masses of the transplant population, which give a more accurate assessment of the transplant growth status than that obtained from the image analysis system. The number of nodes in the hidden layer of the ANN model was determined through trial and error. The growth variables thus obtained from the ANN model using a sweetpotato (Ipomoea batatas (L.) Lam.) transplant population were more accurate than those obtained from a regression model. The image analysis system, after being improved by using the ANN model, successfully identified the transplant growth status with a high degree of accuracy.
机译:已经开发出双目立体视觉系统以估计移植人群的生长变量。在本研究中,通过采用基于反向传播算法的三层人工神经网络模型(ANN模型)对图像分析系统进行了改进。 ANN模型的输入是从图像分析系统获得的移植种群的平均身高,叶面积,预计叶面积和质量。 ANN模型的输出是移植种群的平均高度,未折叠叶片的数量,叶面积以及新鲜和干燥的质量,这比从图像分析系统获得的移植物生长状态的评估更为准确。 ANN模型的隐藏层中的节点数是通过反复试验确定的。因此,使用甘薯(Ipomoea batatas(L.)Lam。)移植种群从ANN模型获得的生长变量比从回归模型获得的生长变量更准确。通过使用ANN模型进行改进,图像分析系统成功地以高准确度确定了移植物的生长状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号