首页> 外文OA文献 >Rossby Wave Breaking, Microbreaking, Filamentation, and Secondary Vortex Formation: The Dynamics of a Perturbed Vortex
【2h】

Rossby Wave Breaking, Microbreaking, Filamentation, and Secondary Vortex Formation: The Dynamics of a Perturbed Vortex

机译:Rossby波破碎,微破碎,细丝化和次级涡旋形成:扰动涡旋的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The behavior of an isolated vortex perturbed by topographically forced Rossby waves is studied using the method of Contour Dynamics. For a single-contour vortex a distinct forcing threshold exists above which the wave breaks in a dynamically significant way, leading to a disruption of the vortex. This breaking is distinguished from the process of weak filamentary breaking described by Dritschel and classified here as microbreaking; the latter occurs in nondivergent flow even at very small forcing amplitudes but does not affect the vortex in a substantial manner. In cases with finite Rossby deformation radius (comparable with the vortex radius) neither breaking nor microbreaking occurs below the forcing threshold. In common with previous studies using high-resolution spectral models, the vortex is not diluted by intrusion of outside air, except during remerger with a secondary vortex shed previously from the main vortex during a breaking event. The kinematics of the breaking process and of the vortex interior and the morphology of material ejected from the vortex are described. When the Rossby radius is finite there is substantial mixing in the deep interior of the vortex, even when the vortex is only mildly disturbed. Implications for the stratospheric polar vortex are discussed.
机译:使用轮廓动力学方法研究了被地形强迫的Rossby波扰动的孤立涡旋的行为。对于单轮廓涡旋,存在明显的强迫阈值,在该阈值之上,波以动态有效的方式破裂,从而导致涡旋破裂。这种断裂与Dritschel描述的弱丝断裂过程不同,此处被称为微断裂。后者即使在很小的推力振幅下也以非发散流的形式发生,但基本上不会影响涡旋。在具有有限Rossby变形半径(与涡旋半径相当)的情况下,在强迫阈值以下均不会发生破裂或微破裂。与以前使用高分辨率光谱模型的研究一样,该涡流不会因外界空气的侵入而被稀释,除非在破碎事件期间与先前从主涡流中逸出的次级涡流重合并期间。描述了破裂过程和旋涡内部的运动学,以及从旋涡中喷射出来的物质的形态。当罗斯比半径是有限的时,即使仅轻微地扰动了涡旋,涡旋的深处也会有大量混合。讨论了对平流层极涡的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号