首页> 外文OA文献 >Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure
【2h】

Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

机译:对复杂地震波形进行高级分析以表征地下地球结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.
机译:本文包括三个主要部分:(1)卡拉布里亚板下地幔结构的体波分析;(2)表征城市地下表层结构的微震的空间平均相干性(SPAC)分析;(3)面波频散反演用于剪切波速度结构。尽管这三个项目采用了不同的技术并研究了地球的不同部分,但它们的目的是相同的,这是通过分析记录在地球表面的复杂地震波形来更好地理解和表征地下地球的结构。我的第一个项目是对卡拉布里亚板下地幔结构的体波分析。其目的是通过分析自然地震产生的地震图,更好地了解卡拉布里亚板块的俯冲构造。第勒尼安海南部下方卡拉布里亚弧的回滚和俯冲是在短空间尺度上平板形态和平板-地幔相互作用的案例研究。我通过PASSCAL CAT / SCAN实验中记录的体波波散,散射和衰减分析了穿越第勒尼安海南部卡拉布板和上地幔楔的地震图。压缩体波表现出与平板路径相关的色散,这是高频分量的到达相对于低频分量而言是延迟的。体波的散射和衰减在空间上也与平板路径相关。我使用这种相关性来估计板边界的位置,并进一步建议,观察到的近板衰减的空间变化可以归因于板周围的地幔流型。我的第二个项目是对微震的空间平均相干性(SPAC)分析,以进行地下结构表征。土壤和岩石中的剪切波速度(Vs)信息已被认为是针对特定地点的地面运动预测研究的关键参数,这对于位于地震活跃区的城市地区而言是非常必要的。 SPAC分析微震提供了一种有效的方法来估计Vs结构。与其他Vs估计方法相比,SPAC是无创的,不需要任何活动源,因此,在大城市中尤其有用。我在两个城市地区应用了SPAC方法。首先是历史名城南卡罗来纳州的查尔斯顿,那里的地震危险性很高,引起了公众的极大关注。因此,准确的Vs信息对于地震现场分类和现场响应研究至关重要。 SPAC的第二项研究位于纽约市曼哈顿,沿岛的高速对比深度和土壤与基岩的深度不同。这两个实验表明,与钻孔和其他技术相比,使用SPAC方法可以准确估计Vs结构。 SPAC被证明是一种有效的城市Vs估计技术。地震学中的一个重要问题是从地震图的地面记录中反转地下结构。我的第三个项目专注于解决这一复杂的地球物理反问题,特别是针对剪切波速度的表面波相速度色散曲线反演。除了标准线性反演外,我还开发了高级反演技术,包括使用井眼数据作为约束条件的联合反演,使用蒙特卡洛的非线性反演和模拟退火算法。解决逆问题的一种创新方法是从所有可接受模型的集合中进行推理。集合的统计特征提供了一种更好的表征地球模型的方法。

著录项

  • 作者

    Jia Tianxia;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号