首页> 外文OA文献 >Combined speech and speaker recognition with speaker-adapted connectionist models
【2h】

Combined speech and speaker recognition with speaker-adapted connectionist models

机译:结合语音和说话人识别功能以及适合说话人的连接模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One approach to speaker adaptation for the neural-network acoustic models of a hybrid connectionist-HMM speech recognizer is to adapt a speaker-independent network by performing a small amount of additional training using data from the target speaker, giving an acoustic model specifically tuned to that speaker. This adapted model might be useful for speaker recognition too, especially since state-of-the-art speaker recognition typically performs a speech-recognition labelling of the input speech as a first stage. However, in order to exploit the discriminant nature of the neural nets, it is better to train a single model to discriminate both between the different phone classes (as in conventional speech recognition) and between the target speaker and the 'rest of the world' (a common approach to speaker recognition). We present the results of using such an approach for a set of 12 speakers selected from the DARPA/NIST Broadcast News corpus. The speaker-adapted nets showed a 17% relative improvement in worderror rate on their target speakers, and were able to identify among the 12 speakers with an average equal-error rate of 6.6%.
机译:针对混合连接器-HMM语音识别器的神经网络声学模型进行说话人自适应的一种方法是,通过使用来自目标说话者的数据进行少量的额外训练,来调整独立于说话者的网络,从而给出专门调整为那位演讲者。这种调整后的模型也可能对说话者识别有用,特别是因为最先进的说话者识别通常在第一阶段对输入语音进行语音识别标记。但是,为了利用神经网络的判别性质,最好训练一个模型来区分不同的电话类别(如常规语音识别)以及目标说话者与“世界其他地区” (说话人识别的常用方法)。我们介绍了从DARPA / NIST广播新闻语料库中选择的一组12名发言人使用这种方法的结果。适应说话的人的网络显示其目标说话人的单词错误率相对提高了17%,并且能够在12位说话者中识别出平均等错误率为6.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号