首页> 外文OA文献 >Neuronal Diversification Within the Retina: Generation of Crossed and Uncrossed Retinal Ganglion Cells
【2h】

Neuronal Diversification Within the Retina: Generation of Crossed and Uncrossed Retinal Ganglion Cells

机译:视网膜内神经元多样化:交叉和未交叉的视网膜神经节细胞的生成

摘要

Recent advances in the field of axon guidance have revealed complex transcription factor codes that regulate neuronal subtype identity and their corresponding axon projections. Retinal axon divergence at the optic chiasm midline is key to the establishment of binocular vision in higher vertebrates. In the visual system of binocular animals, the ipsilaterally and contralaterally projecting retinal ganglion cells are distinguished by the laterality of their axonal projections. Specific axon guidance receptors and their ligands are expressed in retinal ganglion cells (RGCs) and at the chiasm, tightly regulating the development of the ipsilateral (uncrossed) and contralateral (crossed) retinal projections. Though many factors are known, their dysfunction leads to only partial misrouting of RGC axons. Moreover, the complex transcription factor codes that regulate RGC subtype identity are only beginning to be uncovered. Numerous gaps remain in our understanding of how these guidance molecules are transcriptionally regulated and how they are induced by the patterning genes that set up the different domains in which these RGC subtypes reside. An even more elusive question within the field is how the ipsilateral and contralateral RGC subpopulations acquire their different cell fates. In this thesis, I present my work on dissecting out the molecular signatures of the ipsilateral and contralateral RGC populations during embryonic development through gene profiling followed by the functional characterization of one candidate from this screen. In Chapter 2, I developed a cell purification method based on retrograde labeling of these two cell populations from their divergent axonal projections followed by cell sorting. This method can be used in studies requiring purified populations of embryonic RGCs. In Chapter 3, I conducted a microarray screen of purified ipsilateral and contralateral RGCs using the above method. Through subsequent validation of the in vivo expression patterns of select candidates, I identified a number of genes that are differentially expressed in ipsilateral and contralateral RGCs. Subsequent functional characterization of these genes has the potential to uncover novel mechanisms for regulating axon guidance, cell differentiation, fate specification, and other regulatory pathways in ipsilateral and contralateral RGC development and function. The results of this screen also revealed that ipsilateral and contralateral RGC may have distinct developmental origins and utilize different strategies for differentiation. In Chapter 4, I demonstrate a novel role for cyclin D2, one of the above candidates, in the production of ipsilateral RGCs. The G1-active cyclin D2 is highly expressed in the ventral peripheral retina preceding and coincident with the developmental window of ipsilateral RGC genesis. I further found that ipsilateral RGC production is disrupted in the cyclin D2 null mouse. The expression of cyclin D2 in a distinct proliferative zone that has evolutionary significance in ipsilateral RGC production and its subtype-specific requirement during retinal development suggest that cyclin D2 may mark a distinct progenitor pool for ipsilateral RGCs. Thus, these studies offer an important advance in our understanding of neuronal subtype diversification within the retina.
机译:轴突指导领域的最新进展已经揭示了调节神经元亚型同一性及其相应轴突投射的复杂转录因子代码。视交叉中线上的视网膜轴突发散是在高等脊椎动物中建立双眼视力的关键。在双目动物的视觉系统中,同侧和对侧突出的视网膜神经节细胞的特征在于它们的轴突突出的侧面。特定的轴突导向受体及其配体在视网膜神经节细胞(RGC)和黑the中表达,并严格调节同侧(未交叉)和对侧(交叉)的视网膜投影的发育。尽管已知许多因素,但它们的功能障碍仅导致RGC轴突的部分错误布线。而且,调节RGC亚型同一性的复杂转录因子代码才刚刚被发现。在我们对这些指导分子如何转录调控以及如何通过模式化基因(它们建立了这些RGC亚型所驻留的不同域)的诱导方式的理解中,仍有许多空白。在该领域内,一个甚至更难以捉摸的问题是同侧和对侧RGC亚群如何获得其不同的细胞命运。在这篇论文中,我介绍了我的工作,即通过基因谱分析,然后从该筛选中筛选一名候选人的功能,剖析胚胎发育过程中同侧和对侧RGC群体的分子特征。在第2章中,我开发了一种细胞纯化方法,该方法基于从这两个细胞群体的不同轴突投影中逆行标记它们,然后进行细胞分选。该方法可用于需要纯化的胚胎RGC群体的研究。在第3章中,我使用上述方法对纯化的同侧和对侧RGC进行了微阵列筛选。通过对选定候选物的体内表达模式的后续验证,我鉴定了许多在同侧和对侧RGC中差异表达的基因。这些基因的后续功能表征有可能揭示调节同侧和对侧RGC发育和功能中轴突导向,细胞分化,命运指定以及其他调控途径的新机制。该筛选结果还显示,同侧和对侧RGC可能具有不同的发育起源,并采用不同的分化策略。在第4章中,我证明了上述候选基因之一的细胞周期蛋白D2在同侧RGC生产中的新作用。 G1活性细胞周期蛋白D2在同侧RGC发生的发展窗口之前并与之吻合的腹周围视网膜中高表达。我进一步发现在cyclin D2 null小鼠中,同侧RGC的产生被破坏了。细胞周期蛋白D2在同侧RGC产生中具有进化意义的独特增生区及其视网膜发育过程中亚型特异性需求的表达表明,细胞周期蛋白D2可能标志着同侧RGC的独特祖细胞。因此,这些研究为我们对视网膜内神经元亚型多样化的理解提供了重要的进展。

著录项

  • 作者

    Wang Qing;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号