首页> 外文OA文献 >Proteins at Interfaces: Conformational Behavior and Wear
【2h】

Proteins at Interfaces: Conformational Behavior and Wear

机译:界面蛋白:构象行为和磨损

摘要

Proteins at interfaces play a major role in biomaterials and lab-on-a-chip devices. Protein interactions with the surface change their conformations and therefore their ability to bind to their respective ligands. Another major area of interest surrounding biomaterials and lab-on-a-chip devices is the prediction and prevention of wear. Wear is the progressive loss of material from an object caused by contact and relative movement of the contacting solid, liquid, or gas. It is estimated that wear costs 1% of the gross domestic product (approximately $150 billion for the US). With the emergence of drug-releasing implants and lab-on-the-chip devices, wear has also become a major concern in bio- and nano- technology. In our laboratory, we use microtubules (filamentous proteins) gliding on kinesin motor proteins as transporters in biosensors. This system, known as the motility assay, is ideal for studying how the conformation of kinesins impacts the gliding of microtubules and therefore the performance of the biosensor. The proposed studies seek to show that kinesins' geometry changes with their grafting density following De Gennes' scaling laws for flexible polymers (Chapter 2 , published in Langmuir as E.L.P. Dumont, H. Belmas, and H. Hess, Observing the mushroom-to-brush transition for kinesin proteins, 2013, 29 (49), 15142-15145) and that microtubules experience molecular wear due to their repeated interactions with kinesins (Chapter 3, under review for Nature Nanotechnology as E.L.P. Dumont and H. Hess, Molecular wear of microtubules propelled by surface-adhered kinesins). These two results permit the prediction of the lifetime of biosensors using kinesin-propelled microtubules (Chapter 4, to be submitted to Nano Letters as Y. Jeune-Smith, E.L.P. Dumont and H. Hess, Wear and breakage combine to mechanically degrade kinesin-powered molecular shuttles). I also discuss the importance of mechanical fatigue for molecular machine design (Chapter 5, published as H. Hess and E.L.P. Dumont, Fatigue Failure and Molecular Machine Design, Small, 7, 1619-1623, 2011). Finally, and it is unrelated to the previous chapters, I developed Monte Carlo simulations for protein adsorption on polymer-coated surfaces (Chapter 6, to be submitted as E.L.P. Dumont, A.V. Guillaume, A. Gore, and H. Hess, Random Sequential Adsorption of proteins on polymer-covered surfaces: A simulation-based approach) and I explored a molecular model to explain the fracture of materials at low stresses (Chapter 7).
机译:界面蛋白在生物材料和芯片实验室设备中起着重要作用。蛋白质与表面的相互作用改变了它们的构象,因此改变了它们结合各自配体的能力。围绕生物材料和芯片实验室设备的另一个主要关注领域是磨损的预测和预防。磨损是指由于接触的固体,液体或气体的接触和相对运动而引起的物体材料的逐渐损失。据估计,磨损成本占国内生产总值的1%(美国约为1500亿美元)。随着释放药物的植入物和芯片实验室设备的出现,磨损也已成为生物和纳米技术中的主要问题。在我们的实验室中,我们使用在驱动蛋白运动蛋白上滑动的微管(丝状蛋白)作为生物传感器中的转运蛋白。该系统称为运动测定法,是研究驱动蛋白构象如何影响微管滑动以及生物传感器性能的理想选择。拟议的研究试图表明,驱动蛋白的几何形状随其接枝密度的变化而变化,遵循De Gennes对挠性聚合物的缩放定律(第2章,在Langmuir上以ELP Dumont,H。Belmas和H. Hess的形式发表,观察了蘑菇到驱动蛋白的电刷过渡,2013,29(49),15142-15145),并且微管由于与驱动蛋白的反复相互作用而经历了分子磨损(第3章,自然纳米技术(如ELP Dumont和H.表面粘附的驱动蛋白推动的微管)。这两个结果允许使用驱动蛋白驱动的微管预测生物传感器的寿命(第4章,以Y. Jeune-Smith,ELP Dumont和H. Hess的身份提交给Nano Letters),磨损和破损结合起来以机械方式降解驱动蛋白驱动的动力分子穿梭)。我还讨论了机械疲劳对分子机器设计的重要性(第5章,出版于H.Hess和E.L.P.Dumont,《疲劳失效和分子机器设计》,Small,7,1619-1623,2011)。最后,它与前面的章节无关,我开发了蛋白质在聚合物涂层表面上吸附的蒙特卡洛模拟(第6章,以ELP Dumont,AV Guillaume,A。Gore和H. Hess的形式提交,随机顺序吸附聚合物覆盖的表面上的蛋白质的合成:一种基于模拟的方法),我探索了一种分子模型来解释低应力下材料的断裂(第7章)。

著录项

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号