首页> 外文OA文献 >Use of Supervisory Control and Data Acquisition for Damage Location of Water Delivery Systems
【2h】

Use of Supervisory Control and Data Acquisition for Damage Location of Water Delivery Systems

机译:使用监督控制和数据采集来确定供水系统的损坏位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Urban water delivery systems can be damaged by earthquakes or severely cold weather. In either case, the damage cannot easily be detected and located, especially immediately after the event. In recent years, real-time damage estimation and diagnosis of buried pipelines attracted much attention of researchers focusing on establishing the relationship between damage ratio (breaks per unit length of pipe) and ground motion, taking the soil condition into consideration. Due to the uncertainty and complexity of the parameters that affect the pipe damage mechanism, it is not easy to estimate the degree of physical damage only with a few numbers of parameters. As an alternative, this paper develops a methodology to detect and locate the damage in a water delivery system by monitoring water pressure on-line at some selected positions in the water delivery systems. For the purpose of on-line monitoring, emerging supervisory control and data acquisition technology can be well used. A neural network-based inverse analysis method is constructed for detecting the extent and location of damage based on the variation of water pressure. The neural network is trained by using analytically simulated data from the water delivery system with one location of damage, and validated by using a set of data that have never been used in the training. It is found that the method provides a quick, effective, and practical way in which the damage sustained by a water delivery system can be detected and located.
机译:城市供水系统可能会因地震或严寒而受损。无论哪种情况,都很难轻易发现并确定损坏的位置,特别是在事件发生后立即。近年来,埋入管道的实时损伤评估和诊断引起了研究者的广泛关注,他们着眼于在考虑土壤条件的情况下建立损伤率(每单位长度的管道破裂)与地震动之间的关系。由于影响管道损坏机理的参数的不确定性和复杂性,仅使用几个参数来估计物理损坏的程度并不容易。作为替代方案,本文提出了一种方法,通过在线监测输水系统中某些选定位置的水压来检测和定位输水系统中的损坏。为了进行在线监视,可以很好地使用新兴的监督控制和数据采集技术。构建了一种基于神经网络的逆分析方法,基于水压的变化来检测损伤的程度和位置。通过使用输水系统中具有一个损坏位置的分析模拟数据对神经网络进行训练,并使用一组从未在训练中使用过的数据进行验证。发现该方法提供了一种快速,有效和实用的方法,在该方法中可以检测和定位由输水系统承受的损坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号