首页> 外文OA文献 >Micro-Evaporator Design and Investigation of Phase Change in Tailored Microchannels
【2h】

Micro-Evaporator Design and Investigation of Phase Change in Tailored Microchannels

机译:量身定制的微通道微蒸发器设计与相变研究

摘要

Microchannels show promising potential for implementation in next generation high heat flux cooling schemes. Promising research has been conducted in the area of MEMS cooling devices, taking advantage of the increased heat transfer characteristics in microfabricated structures. While significant advances in microchannels can be found in the literature, little work is being done to develop microchannels with non-uniform cross sections that can evaporate fluid without the presence of the bubbles at the exit flow. This thesis presents an experimental study of flow evaporation in micro-evaporators with tailored microchannel walls, demonstrating the ability to provide a stable flow of evaporated fluid for energy conversion and chip cooling applications. The design and modeling approach, microfabrication process and the full testing of the micro-evaporators are a part of this study and are all presented. Two mechanisms are proposed to stabilize the internal flow evaporation. The first mechanism is to establish a temperature gradient along the channel to separate the room temperature inlet fluid from the steam exit flow. The second mechanism is to change the direction of the surface tension forces acting on the meniscus to fix its position along the channel. The test device used in this work consists of a silicon wafer with through-etched complex microchannels that is anodically bonded to a glass wafer on each side. Inlet and exit holes for the fluid are machined in the glass wafers. Water is forced through the chip while it is heated on the exit side of the three layer chip. The qualitative nature of the two-phase flow along the shaped channels is observed through the glass cover wafer, for different flow rates and wall temperatures. The work also provides a comparative study between different channel designs, different boundary conditions which reveal the benefits of the shaped microchannels with temperature gradient. The temperature gradient achieved with different thickness of channel walls shows agreement with the modeling results. Also, the benefit of having multiple expansions in the channels was demonstrated. By using these two mechanisms the onset of water evaporation was fixed along the channel. The behavior of the meniscus in a microchannel with complex geometries and with a temperature gradient along it is quite encouraging in the perspective of the phase change in microchannels. These results of this research provide a design basis for a broad range of micro thermal systems, or Power MEMS, for chip cooling and micro power generation.
机译:微通道显示出在下一代高热通量冷却方案中实施的潜力。利用微制造结构中增加的热传递特性,已经在MEMS冷却装置领域进行了有希望的研究。尽管在文献中可以找到微通道的显着进步,但很少有工作来开发具有不均匀横截面的微通道,这些微通道可以蒸发流体而在出口处没有气泡。本文提出了在具有定制微通道壁的微蒸发器中进行流蒸发的实验研究,证明了为能量转换和切屑冷却应用提供稳定的蒸发流体流的能力。本研究的一部分将介绍设计和建模方法,微细加工工艺以及微蒸发器的全面测试。提出了两种机制来稳定内部流的蒸发。第一种机制是沿通道建立温度梯度,以将室温入口流体与蒸汽出口流分开。第二种机制是改变作用在弯液面上的表面张力的方向,以固定其沿通道的位置。在这项工作中使用的测试设备由硅晶片组成,该硅晶片具有经过蚀刻的复杂微通道,该微通道阳极结合到玻璃晶片的每一侧。在玻璃晶片上加工出流体的进出孔。在三层切屑的出口侧加热时,水被迫通过切屑。对于不同的流速和壁温,通过玻璃盖晶片观察到沿成形通道的两相流的定性性质。这项工作还提供了不同通道设计,不同边界条件之间的比较研究,揭示了成形微通道具有温度梯度的好处。用不同厚度的通道壁获得的温度梯度与模型结果吻合。此外,还展示了在通道中进行多次扩展的好处。通过使用这两种机制,水的蒸发沿通道得以固定。从微通道的相变角度来看,弯月面在具有复杂几何形状且沿其具有温度梯度的微通道中的行为非常令人鼓舞。这项研究的这些结果为用于芯片冷却和微发电的各种微热系统或Power MEMS提供了设计基础。

著录项

  • 作者

    Arslan Selin;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号