首页> 外文OA文献 >Noise Robust Pitch Tracking by Subband Autocorrelation Classification
【2h】

Noise Robust Pitch Tracking by Subband Autocorrelation Classification

机译:子带自相关分类的噪声鲁棒基音跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Pitch tracking algorithms have a long history in various applications such as speech coding and extracting information, as well as other domains such as bioacoustics and music signal processing. While autocorrelation is a useful technique for detecting periodicity, autocorrelation peaks suffer ambiguity, leading to the classic “octave error” in pitch tracking. Moreover, additive noise can affect autocorrelation in ways that are difficult to model. Instead of explicitly using the most obvious features of autocorrelation, we present a trained classifier-based approach which we call Subband Autocorrelation Classification (SAcC). A multi-layer perceptron classifier is trained on the principal components of the autocorrelations of subbands from an auditory filterbank. Training on bandlimited and noisy speech (processed to simulate a low-quality radio channel) leads to a great increase in performance over state-of-the-art algorithms, according to both the traditional GPE measure, and a proposed novel Pitch Tracking Error which more fully reflects the accuracy of both pitch extraction and voicing detection in a single measure.
机译:音调跟踪算法在诸如语音编码和信息提取之类的各种应用以及诸如生物声学和音乐信号处理之类的其他领域中有着悠久的历史。尽管自相关是检测周期性的有用技术,但自相关峰值仍存在歧义,导致音调跟踪中出现经典的“八度音阶误差”。而且,附加噪声会以难以建模的方式影响自相关。我们没有明确使用自相关的最明显特征,而是提供了一种经过训练的基于分类器的方法,称为子带自相关分类(SAcC)。对来自听觉滤波器组的子带自相关的主要成分训练多层感知器分类器。根据传统的GPE测度和拟议的新型音高跟踪误差,对带宽有限和嘈杂的语音进行训练(经过处理以模拟低质量的无线电信道),与传统算法相比,可大大提高性能。一次可以更全面地反映音高提取和声音检测的准确性。

著录项

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号