首页> 外文OA文献 >Evaluation methods and decision theory for classification of streaming data with temporal dependence
【2h】

Evaluation methods and decision theory for classification of streaming data with temporal dependence

机译:时间相关流数据分类的评估方法和决策理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predictive modeling on data streams plays an important role in modern data analysis, where data arrives continuously and needs to be mined in real time. In the stream setting the data distribution is often evolving over time, and models that update themselves during operation are becoming the state-of-the-art. This paper formalizes a learning and evaluation scheme of such predictive models. We theoretically analyze evaluation of classifiers on streaming data with temporal dependence. Our findings suggest that the commonly accepted data stream classification measures, such as classification accuracy and Kappa statistic, fail to diagnose cases of poor performance when temporal dependence is present, therefore they should not be used as sole performance indicators. Moreover, classification accuracy can be misleading if used as a proxy for evaluating change detectors with datasets that have temporal dependence. We formulate the decision theory for streaming data classification with temporal dependence and develop a new evaluation methodology for data stream classification that takes temporal dependence into account. We propose a combined measure for classification performance, that takes into account temporal dependence, and we recommend using it as the main performance measure in classification of streaming data.
机译:数据流的预测建模在现代数据分析中起着重要作用,在现代数据分析中,数据不断到达并且需要实时进行挖掘。在流设置中,数据分布通常随着时间而变化,并且在操作过程中进行自我更新的模型正在成为最新技术。本文规范了此类预测模型的学习和评估方案。我们从理论上分析了分类器对具有时间依赖性的流数据的评估。我们的发现表明,当存在时间依赖性时,公认的数据流分类度量(例如分类准确性和Kapp统计量)无法诊断性能不佳的案例,因此不应将其用作唯一的绩效指标。此外,如果将分类精度用作具有时间依赖性数据集的评估变化检测器的代理,则可能会产生误导。我们制定了具有时间依赖性的流数据分类的决策理论,并开发了一种考虑时间依赖性的数据流分类的新评估方法。我们提出了一种用于分类性能的综合度量,其中考虑了时间依赖性,并且建议将其用作流数据分类中的主要性能度量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号