首页> 外文OA文献 >3D face recognition using multiview keypoint matching
【2h】

3D face recognition using multiview keypoint matching

机译:使用多视图关键点匹配的3D人脸识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel algorithm for 3D face recognition based point cloud rotations, multiple projections, and voted keypoint matching is proposed and evaluated. The basic idea is to rotate each 3D point cloud representing an individual’s face around the x, y or z axes, iteratively projecting the 3D points onto multiple 2.5D images at each step of the rotation. Labelled keypoints are then extracted from the resulting collection of 2.5D images, and this much smaller set of keypoints replaces the original face scan and its projections in the face database. Unknown test faces are recognised firstly by performing the same multiview keypoint extraction technique, and secondly, the application of a new weighted keypoint matching algorithm. In an extensive evaluation using the GavabDB 3D face recognition dataset (61 subjects, 9 scans per subject), our method achieves up to 95% recognition accuracy for faces with neutral expressions only, and over 90% accuracy for face recognition where expressions (such as a smile or a strong laugh) and random faceoccluding gestures are permitted.
机译:提出并评估了一种基于点云旋转,多个投影和投票关键点匹配的3D人脸识别新算法。基本思想是围绕x,y或z轴旋转代表一个人脸的每个3D点云,并在旋转的每个步骤中将3D点迭代投影到多个2.5D图像上。然后从生成的2.5D图像集合中提取标记的关键点,这组更小的关键点将替换原始的面部扫描及其在面部数据库中的投影。首先通过执行相同的多视图关键点提取技术来识别未知的测试面孔,其次,使用新的加权关键点匹配算法。在使用GavabDB 3D人脸识别数据集(61个对象,每个对象9次扫描)的广泛评估中,我们的方法仅对具有中性表情的脸部实现了高达95%的识别精度,而对于表情(例如,笑容或强烈笑声)和随机遮盖手势是允许的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号