首页> 外文OA文献 >The silica issue in the limestone resource at McDonald's Oparure Lime Quarry
【2h】

The silica issue in the limestone resource at McDonald's Oparure Lime Quarry

机译:麦当劳Oparure Lime Quarry石灰石资源中的二氧化硅问题

摘要

McDonald's Oparure Lime Quarry extracts limestone from the latest Oligocene to earliest Miocene aged Otorohanga Limestone formation of the Te Kuiti Group. The quarry produces a range of limestone grades that are utilised by various industries, including the iron and steel, agricultural, and roading construction industries. One of the most important aspects of production is quality control which is driven by quality restrictions on the chemical composition of the limestones imposed by the industrial end users. In steel manufacture, silica is highly undesirable as it has detrimental effects on downstream processes such as the ability of calcium oxide to remove impurities from the steel and its abrasiveness inside pipes transporting lime into the steel making vessel. A guideline of 1.7% silica content in the lime is required. McDonald's Lime Ltd and major shareholders Holcim New Zealand Ltd are aware that silica levels vary across the Oparure limestone resource, and so hold some concerns about their ability to maintain quality guidelines on their limestone products. Consequently, it is relevant that knowledge be gained about the nature, distribution, and origin of silica-rich zones within the limestone resource so as to allow for greater certainty in quarry planning and operations. The main aims of this study were to determine the chemical stratigraphy of the limestone units in the quarry so as to assess primary sources of silica in the intact limestone (host limestone); to use field methods to measure the nature and distribution of a variety of discontinuity features which separate the intact rock blocks within the limestone rock mass; to identify sources of secondary silica-rich materials and their characteristics; and to determine the overall distribution of silica within the limestone resource. Additionally, a ground penetrating radar (GPR) trial was undertaken to establish whether this geophysical technique is successful in detecting subsurface caves that may trap silica-rich materials. The host limestone or intact rock mass of the quarry units contains variable amounts of calcium carbonate, as follows: Caprock (av. 89.5%), Upper Steel (av. 98.2%), Aglime (av. 94.5%), High Grade (av. 97.2%), Lower Steel (av. 97.3%), and Sub-economic (av. 95%). The remaining non-carbonate component largely resides in silica-bearing minerals such as clay minerals, quartz, feldspar, and glauconite, but also in authigenic minerals such as pyrite and gypsum. In McDonald's Oparure Lime Quarry six main discontinuity types are identified, all of which are associated with silica-rich materials. The six discontinuity types are: (1) discrete seams; (2) diffuse seams; (3) subhorizontal stylolites; (4) subvertical stylolites; (5) joints; and (6) caves and other karst features. Types (1), (2), and (3) have formed as a result of burial of the carbonate-rich sediments during which pressure dissolution has preferentially dissolved skeletal fragments, leaving behind and concentrating insoluble residue (siliceous material). These are primary sources of silica. Types (4) and (5) are produced as a result of tectonic activity, including deformation and uplift. Subvertical stylolites formed by pressure dissolution associated with tectonic stresses during uplift of the limestones, and their contained silica also derives from a primary source inside the limestone strata. Type (6) discontinuities are produced by dissolution by fresh water of the subaerially exposed limestone. Joints, caves, and other karst features trap silica-rich materials sourced mainly from overlying overburden lithologies, including the Quaternary Kauroa Ash and the early Miocene Mahoenui Group mudstone; these are secondary sources of silica. A distinctive leathery clay mineral called palygorskite occurs commonly as a chemical precipitate in both joints and caves as an infill. A final source of silica identified that is not a discontinuity material, but is operation induced, involves the accumulation of blast and road dust coating rock surfaces, here referred to as surface accumulations.The overburden units and discontinuity materials show a range of chemical compositions and some, such as cave infills, comprise greater than 60% SiO2. The main siliceous minerals within overburden units and discontinuity materials are clays (smectite, palygorskite, gibbsite, vermiculite, halloysite, illite), quartz (and minor cristobalite), feldspar (oligoclase), and glauconite. Carbonate minerals including mainly calcite and minor dolomite. GPR successfully detected cave structures to an effective penetration of about 10 m, but cave infills cannot be quantified using this method.The knowledge gained in this study about the distribution, location, quantities, and nature of the silica materials in the limestone units, closely related to the different discontinuity types identified, has the potential to assist in determining appropriate processing techniques to minimise the silica issue at the Oparure Quarry.
机译:麦当劳的Oparure石灰石采石场从Te Kuiti集团的最新渐新世至最早的中新世Otorohanga石灰石地层中提取石灰石。采石场生产一系列石灰石,可被钢铁,农业,道路建设等行业所使用。生产中最重要的方面之一是质量控制,这是由工业最终用户对石灰石的化学成分施加质量限制所驱动的。在钢铁制造中,二氧化硅是非常不希望的,因为它对下游工艺有不利影响,例如氧化钙从钢铁中去除杂质的能力及其在将石灰输送到炼钢容器的管道内的磨蚀性。要求石灰中二氧化硅含量≤1.7%的准则。麦当劳石灰公司和主要股东Holcim New Zealand Ltd知道,Oparure石灰石资源中的二氧化硅含量各不相同,因此对他们维持其石灰石产品质量准则的能力有些担忧。因此,获取有关石灰石资源中富含二氧化硅的区域的性质,分布和来源的知识是有意义的,以便在采石场的规划和运营中具有更大的确定性。这项研究的主要目的是确定采石场中石灰岩单元的化学地层,以便评估完整石灰岩(主石灰岩)中二氧化硅的主要来源。使用现场方法来测量各种不连续特征的性质和分布,这些不连续特征将完整的岩石块分隔在石灰岩岩体中;确定富含二氧化硅的次生材料的来源及其特性;并确定二氧化硅在石灰岩资源中的总体分布。此外,还进行了一项探地雷达(GPR)试验,以确定这种地球物理技术是否能成功检测出可能捕获富含二氧化硅物质的地下洞穴。采石场的主体石灰石或完整岩石质量包含可变数量的碳酸钙,如下所示:盖层(平均89.5%),上层钢(平均98.2%),阿格里姆(平均94.5%),高级(平均97.2%),下钢(平均97.3%)和次经济(平均95%)。剩余的非碳酸盐成分主要存在于含二氧化硅的矿物中,例如粘土矿物,石英,长石和青钙石,还存在于自生矿物中,例如黄铁矿和石膏。在麦当劳的Oparure Lime Quarry中,确定了六种主要的不连续类型,所有这些都与富含二氧化硅的材料有关。六个不连续类型是:(1)离散接缝; (2)接缝扩散; (3)亚水平纹石; (4)亚垂直型花岗石; (5)关节; (6)洞穴和其他喀斯特地貌。类型(1),(2)和(3)是由于埋藏富含碳酸盐的沉积物而形成的,在沉积过程中压力溶解优先溶解了骨骼碎片,留下并浓缩了不溶性残留物(硅质物质)。这些是二氧化硅的主要来源。类型(4)和(5)是构造活动的结果,包括变形和隆升。在石灰岩抬升过程中,与构造应力有关的压力溶解作用形成的亚垂直型花岗石,其所含的二氧化硅也来自石灰岩地层内部的主要来源。类型(6)的不连续性是通过淡水溶解了暴露在地下的石灰石而产生的。节理,溶洞和其他喀斯特地貌特征是捕获富含二氧化硅的物质,这些物质主要来自上覆岩性,包括第四纪的Kauroa灰和中新世的Mahoenui组早期的泥岩。这些是二氧化硅的次要来源。一种独特的皮革状粘土矿物,称为坡缕石,通常作为化学沉淀物出现在节理和洞穴中,作为填充物。最终确定的二氧化硅来源不是间断材料,而是由操作引起的,涉及爆破和道路粉尘覆盖岩石表面的累积,这里称为表面累积。上覆单元和间断材料显示出一系列化学成分和一些,例如洞穴填充物,包含大于60%的SiO2。覆盖层单元和间断材料中的主要硅质矿物是粘土(蒙脱石,坡缕石,三水铝石,ver石,埃洛石,伊利石),石英(和次方英石),长石(低钙镁橄榄石)和青石质。碳酸盐矿物,主要包括方解石和次要白云石。 GPR成功地检测到有效穿透深度约为10 m的洞穴结构,但无法使用该方法量化洞穴填充物。本研究获得的有关石灰石单元中二氧化硅材料的分布,位置,数量和性质的知识非常接近与确定的不同间断类型有关,有潜力协助确定适当的加工技术,以最大程度减少Oparure采石场的二氧化硅问题。

著录项

  • 作者

    Hansen Orla;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号