首页> 外文OA文献 >Using machine learning techniques to track individuals their fitness activities
【2h】

Using machine learning techniques to track individuals their fitness activities

机译:使用机器学习技术跟踪个人及其健身活动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of wearable devices for fitness and health tracking is on an upward curve with a range of devices now available from a number of manufacturers. The devices work with smart devices to exchange data via Bluetooth communication protocol. This paper presents the results of an initial study on the security and privacy weaknesses of wearable fitness devices. It discusses methods to 1) capture and process data sent from a wearable device to its paired smartphone during synchronization and 2) analyze the records to track individuals and make predictions. The data analysis methods use supervised machine-learning techniques to train a classifier for associating synchronization records with the individuals, their physical activities, and conditions under which they were performed. Results of the study show that the methods allow individuals and their activities to be tracked, both of which infringe on the privacy of the user. The paper also provides recommendations on improving the security of wearable devices based on the initial research results.
机译:可穿戴设备在健身和健康追踪中的使用呈上升趋势,许多制造商现已提供一系列设备。这些设备与智能设备一起通过蓝牙通信协议交换数据。本文介绍了可穿戴健身设备的安全性和隐私弱点的初步研究结果。它讨论了以下方法:1)在同步期间捕获和处理从可穿戴设备发送至配对智能手机的数据,以及2)分析记录以跟踪个人并做出预测。数据分析方法使用监督的机器学习技术来训练分类器,以将同步记录与个人,他们的体力活动以及执行记录的条件相关联。研究结果表明,该方法可以跟踪个人及其活动,这两种行为都侵犯了用户的隐私。本文还根据初步研究结果提供了有关提高可穿戴设备安全性的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号