首页> 外文OA文献 >Modelling the spatial effects of the anaesthetic-induced phase-transition in the cerebral cortex
【2h】

Modelling the spatial effects of the anaesthetic-induced phase-transition in the cerebral cortex

机译:模拟麻醉剂诱导的大脑皮层相变的空间效应

摘要

In this thesis I investigate the theoretical stochastic behaviour of a one-dimensional model of the cerebral cortex, exposed to varying concentrations of a general anaesthetic agent. The model is that of Steyn-Ross et al. (2003). Theirs is a continuum theory based on the electrical response of a neural mass known as the macrocolum. The model predicts that as anaethetic concentration is increased the cortex will undergo a sudden electrical phase transition corresponding to loss of consciousness (LOC). Similarly, at return of consciousness (ROC) a second distinct phase transition is predicted. Spatial variability is incorporated into the original homogeneous cortical model of Steyn-Ross et al. (1999). This is done by including the possibility of spatial variation in distant excitatory and inhibitory inputs. By modelling the cortex in this way, we hope to gain an understanding of how the cortex functions, and how anaethestic agents “shut-down” the brain.I simulate the one-dimensional system numerically in order to verify analytical predictions. Both analytical and numerical results show an increase in the coherence (spatial-correlation) of the electrical activity along the one-dimensional rod on approach to both LOC and ROC. Theory and simulations also show that the electrical fluctuations in the unconscious cortex should have a larger correlation length than for the cortex in the conscious state, suggesting that the unconscious state is the more ordered. I derive the theoretical power spectrum and discuss some of its properties.By expanding the model to include spatial variability, we discover the possibility of self-organized structures forming spontaneously in the one-dimensional cortex. These “Turing” or dissipative structures are stationary in time, showing giant DC voltage variations along the cortical rod. Although the dissipative structures can from a rich variety of pseudo-periodic patterns, the physiological significance of such stationary neural structures is not yet clear.
机译:在本文中,我研究了暴露于不同浓度的普通麻醉剂的一维大脑皮层模型的理论随机行为。该模型是Steyn-Ross等人的模型。 (2003)。他们的理论是基于称为大柱的神经团的电响应的连续理论。该模型预测,随着麻醉剂浓度的增加,皮质将经历与意识丧失(LOC)相对应的突然电相变。同样,在意识恢复(ROC)时,会预测出第二个明显的相变。空间变异性被纳入Steyn-Ross等人的原始均质皮质模型中。 (1999)。这可以通过考虑遥远的兴奋性和抑制性输入中空间变化的可能性来完成。通过以这种方式对皮层建模,我们希望了解皮层的功能以及麻醉剂如何“关闭”大脑。我通过数值模拟一维系统来验证分析预测。分析和数值结果均显示,在到达LOC和ROC时,沿一维杆的电活动的相干性(空间相关性)增加。理论和模拟也表明,无意识皮层中的电波动应该比有意识状态中的皮层具有更大的相关长度,这表明无意识状态是更有序的。我导出了理论功率谱并讨论了它的一些特性。通过扩展模型以包括空间可变性,我们发现了自组织结构在一维皮质中自发形成的可能性。这些“转向”或耗散结构在时间上是固定的,显示出沿皮质棒的巨大直流电压变化。尽管耗散结构可以来自多种伪周期模式,但这种静止神经结构的生理学意义尚不清楚。

著录项

  • 作者

    Whiting David Robin;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号