首页> 外文OA文献 >Locally weighted naive Bayes
【2h】

Locally weighted naive Bayes

机译:局部加权的朴素贝叶斯

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite its simplicity, the naive Bayes classifier has surprised machine learning researchers by exhibiting good performance on a variety of learning problems. Encouraged by these results, researchers have looked to overcome naive Bayes' primary weakness—attribute independence—and improve the performance of the algorithm. This paper presents a locally weighted version of naive Bayes that relaxes the independence assumption by learning local models at prediction time. Experimental results show that locally weighted naive Bayes rarely degrades accuracy compared to standard naive Bayes and, in many cases, improves accuracy dramatically. The main advantage of this method compared to other techniques for enhancing naive Bayes is its conceptual and computational simplicity.
机译:尽管简单,但朴素的贝叶斯分类器通过在各种学习问题上表现出出色的性能,使机器学习研究人员感到惊讶。受这些结果的鼓舞,研究人员寻求克服朴素的贝叶斯的主要弱点(属性独立性)并提高算法的性能。本文介绍了朴素贝叶斯的本地加权版本,该版本通过在预测时学习局部模型来放松独立性假设。实验结果表明,与标准朴素贝叶斯相比,局部加权的朴素贝叶斯几乎不会降低准确性,并且在许多情况下,可以显着提高准确性。与其他增强朴素贝叶斯技术的方法相比,此方法的主要优点是其概念和计算简单。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号