首页> 外文OA文献 >Identification of multi-input systems: variance analysis and input design issues
【2h】

Identification of multi-input systems: variance analysis and input design issues

机译:识别多输入系统:方差分析和输入设计问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper examines the identification of multi-input systems. Motivated by an experiment design problem (should one excite the various inputs simultaneously or separately), we examine the effect of an additional input on the variance of the estimated coefficients of parametrized rational transfer function models, with special emphasis on the commonly used FIR, ARK ARMAX, OE and BJ model structures. We first show that, for model structures that have common parameters in the input-output and noise models (e.g. ARMAX), any additional input contributes to a reduction of the covariance of all parameter estimates. We then show that the accuracy improvement extends beyond the case of common parameters in all transfer functions, and we show exactly which parameter estimates are improved when a new input is added. We also conclude that it is always better to excite all inputs simultaneously. (c) 2006 Elsevier Ltd. All rights reserved.
机译:本文研究了多输入系统的识别。受实验设计问题(应同时或分别激发各种输入)的启发,我们研究了附加输入对参数化有理传递函数模型的估计系数方差的影响,其中特别强调了常用的FIR,ARK ARMAX,OE和BJ模型结构。我们首先表明,对于在输入-输出模型和噪声模型(例如ARMAX)中具有共同参数的模型结构,任何其他输入都有助于减小所有参数估计值的协方差。然后,我们表明精度的提高超出了所有传递函数中公共参数的情况,并且我们确切地显示了添加新输入时哪些参数估计得到了改进。我们还得出结论,最好同时激发所有输入。 (c)2006 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号