首页> 外文OA文献 >Classification of mild cognitive impairment and Alzheimer’s Disease with machine-learning techniques using 1H Magnetic Resonance Spectroscopy data
【2h】

Classification of mild cognitive impairment and Alzheimer’s Disease with machine-learning techniques using 1H Magnetic Resonance Spectroscopy data

机译:使用1H磁共振波谱数据通过机器学习技术对轻度认知障碍和阿尔茨海默氏病进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[Abstract] Several magnetic resonance techniques have been proposed as non-invasive imaging biomarkers for the evaluation of disease progression and early diagnosis of Alzheimer’s Disease (AD). This work is the first application of the Proton Magnetic Resonance Spectroscopy 1H-MRS data and machine-learning techniques to the classification of AD. A gender-matched cohort of 260 subjects aged between 57 and 99 years from the Alzheimer’s Disease Research Unit, of the Fundación CIEN-Fundación Reina Sofía has been used. A single-layer perceptron was found for AD prediction with only two spectroscopic voxel volumes (Tvol and CSFvol) in the left hippocampus, with an AUROC value of 0.866 (with TPR 0.812 and FPR 0.204) in a filter feature selection approach. These results suggest that knowing the composition of white and grey matter and cerebrospinal fluid of the spectroscopic voxel is essential in a 1H-MRS study to improve the accuracy of the quantifications and classifications, particularly in those studies involving elder patients and neurodegenerative diseases.
机译:[摘要]已经提出了几种磁共振技术作为非侵入性成像生物标志物,用于评估疾病的进展和阿尔茨海默氏病(AD)的早期诊断。这项工作是质子磁共振波谱1H-MRS数据和机器学习技术在AD分类中的首次应用。研究人员采用了性别匹配的队列,研究对象是来自FundaciónCIEN-FundaciónReinaSofía的阿尔茨海默氏病研究部门的260名年龄在57至99岁之间的受试者。发现一个单层感知器可用于AD预测,左海马区只有两个光谱体素体积(Tvol和CSFvol),在过滤器特征选择方法中AUROC值为0.866(TPR 0.812和FPR 0.204)。这些结果表明,在1H-MRS研究中,了解光谱体素的白,灰质和脑脊液的成分对于提高定量和分类的准确性至关重要,尤其是在涉及老年患者和神经退行性疾病的研究中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号