首页> 外文OA文献 >Combining diversity queries and visual mining to improve content-based image retrieval systems: the DiVI method
【2h】

Combining diversity queries and visual mining to improve content-based image retrieval systems: the DiVI method

机译:结合多样性查询和视觉挖掘来改进基于内容的图像检索系统:DiVI方法

摘要

This paper proposes a new approach to improve similarity queries with diversity, the Diversity and Visually-Interactive method (DiVI), which employs Visual Data Mining techniques in Content-Based Image Retrieval (CBIR) systems. DiVI empowers the user to understand how the measures of similarity and diversity affect their queries, as well as increases the relevance of CBIR results according to the user judgment. An overview of the image distribution in the database is shown to the user through multidimensional projection. The user interacts with the visual representation changing the projected space or the query parameters, according to his/her needs and previous knowledge. DiVI takes advantage of the users’ activity to transparently reduce the semantic gap faced by CBIR systems. Empirical evaluation show that DiVI increases the precision for querying by content and also increases the applicability and acceptance of similarity with diversity in CBIR systems.
机译:本文提出了一种使用分集和视觉交互方法(DiVI)来改善多样性的相似性查询的新方法,该方法在基于内容的图像检索(CBIR)系统中采用了视觉数据挖掘技术。 DiVI使用户能够了解相似性和多样性的度量如何影响他们的查询,以及根据用户的判断来提高CBIR结果的相关性。通过多维投影向用户显示数据库中图像分布的概述。用户根据他/她的需求和先前的知识,与视觉表示进行交互,从而更改投影空间或查询参数。 DiVI利用用户的活动来透明地减少CBIR系统面临的语义鸿沟。实证评估表明,DiVI提高了按内容查询的准确性,也提高了CBIR系统中具有多样性的相似性的适用性和接受度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号