首页> 外文OA文献 >Effect of Fluid-Colloid Interactions on the Mobility of a Thermophoretic Microswimmer in Non-Ideal Fluids
【2h】

Effect of Fluid-Colloid Interactions on the Mobility of a Thermophoretic Microswimmer in Non-Ideal Fluids

机译:流体-胶体相互作用对非理想流体中热泳微泳者流动性的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid–colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid–colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid–colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid–colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.
机译:由光推动的Janus胶体(例如热泳粒子)作为人工微游泳器具有广阔的前景。然而,他们的游泳行为及其对流体性质和流体-胶体相互作用的依赖性仍然知之甚少。在这里,我们使用数值模拟来研究热电泳Janus胶体在其自身温度梯度中的行为。具有能量守恒性的耗散粒子动力学方法用于研究非理想气体和理想气体在不同流体-胶体相互作用,边界条件和温度控制策略下的行为。流体-胶体相互作用似乎对胶体行为有很强的影响,因为它们直接影响胶体表面与流体之间的热交换。模拟结果表明,流体-胶体界面处的热交换减少导致胶体的热泳迁移率提高。发现非理想流体和理想流体的胶体行为不同,表明流体的可压缩性起着重要作用。与最近的理论和模拟预测相一致,发现胶体表面周围的流场受源偶极子支配。最后,不同的温度控制策略似乎对胶体的游泳速度没有强烈影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号