首页> 外文OA文献 >Using biogeochemical tracing and ecohydrological monitoring to increase understanding of water, sediment and carbon dynamics across dryland vegetation transitions
【2h】

Using biogeochemical tracing and ecohydrological monitoring to increase understanding of water, sediment and carbon dynamics across dryland vegetation transitions

机译:使用生物地球化学追踪和生态水文监测,以增进对旱地植被过渡过程中水,沉积物和碳动态的了解

摘要

Using biogeochemical tracing and ecohydrological monitoring to increaseunderstanding of water, sediment and carbon dynamics across drylandvegetation transitionsAlan Puttock (1), Jennifer Dungait (2), Kit Macleod (3), Roland Bol (4), and Richard Brazier (1)(1) University of Exeter, CLES, Geography, Exeter, UK (ap267@ex.ac.uk), (2) Sustainable Soils and Grassland SystemsDepartment Rothamsted Research-North Wyke Okehampton Devon, UK, (3) The James Hutton Institute Craigiebuckler,Aberdeen, AB15 8QH, Scotland, UK, (4) Forschungszentrum Juelich GmbH 52425 Juelich Sitz der Gesellschaft: Juelich,GermanyDrylands worldwide have experienced rapid and extensive environmental change, which across large areas hasbeen characterised by the encroachment of woody vegetation into grasslands. Woody encroachment leads tochanges in the abiotic and biotic structure and function of dryland ecosystems and has been shown to result inaccelerated soil erosion and loss of soil nutrients.The relationship between environmental change, soil erosion and the carbon cycle in dryland environmentsremains uncertain. Covering over 40 % of the terrestrial land surface, dryland environments are of significantglobal importance, both as a habitat and a soil carbon store. Thus, there is a clear need to further our understandingof dryland vegetation change and impacts on carbon dynamics. Here, grama grass to creosote shrub and gramagrass to piñon-juniper woodland; two grass-to-woody ecotones that occur across large swathes of the semi-aridSouthwestern United States are investigated.This study combines an ecohydrological monitoring framework with a multi-proxy biogeochemical approachusing stable carbon isotope and n-alkane lipid biomarkers to trace the source of organic carbon. Resultswill be presented showing that following woody encroachment into grasslands, there is a transition to a moreheterogeneous ecosystem structure and an increased hydrological connectivity. Consequentially, not only dodrylands lose significantly more soil and organic carbon via accentuated fluvial erosion, but this includessignificant amounts of legacy organic carbon which would previously have been stable under the previous grasscover. Results suggest that dryland soils may therefore, not act as a stable organic carbon pool and that acceleratedfluvial erosion of carbon, driven by vegetation change, has important implications for the global carbon cycle.
机译:使用生物地球化学示踪和生态水文监测来增加对旱地植被过渡过程中水,沉积物和碳动态的了解艾伦·帕特克(Alan Puttock)(1),珍妮弗·邓盖特(Jennifer Dungait)(2),基特·麦克劳德(Kit Macleod)(3),罗兰·博尔(Roland Bol)(4)和理查德·布拉齐尔(Richard Brazier)(1)(1)英国埃克塞特埃克塞特大学(CLES)地理学院(ap267@ex.ac.uk),(2)可持续土壤和草地系统部门Rothamsted Research-North Wyke Okehampton Devon,英国,(3)James Hutton Institute Craigiebuckler,阿伯丁, AB15 8QH,英国苏格兰,(4个)Forschungszentrum Juelich GmbH 52425 Juelich Sitz der Gesellschaft:德国Juelich世界各地的干旱地区都经历了快速而广泛的环境变化,其特征是大面积地区的木本植物被草原侵蚀。木质侵蚀导致干旱地区生态系统的非生物和生物结构和功能发生变化,并已证明导致土壤侵蚀加速和土壤养分流失。干旱地区环境变化,土壤侵蚀与碳循环之间的关系仍然不确定。旱地环境作为栖息地和土壤碳储库,其陆地面积超过40%,对全球具有重要意义。因此,显然需要进一步了解干旱地区的植被变化及其对碳动态的影响。在这里,用禾本科草造就的灌木丛和灌木丛到松柏林。研究了横跨美国半干旱西南大片地区的两个草木交错带。该研究结合了生态水文监测框架和多代理生物地球化学方法,利用稳定的碳同位素和正构烷烃脂质生物标记物来追踪其来源。有机碳。结果将显示,木本植物入侵草原后,生态系统结构将向非均质结构过渡,水文连通性增强。因此,不仅干旱地区通过加剧的河流侵蚀而损失大量的土壤和有机碳,而且包括大量的有机碳,这些有机碳以前在以前的草皮下可以保持稳定。结果表明,干旱地区的土壤可能因此不能充当稳定的有机碳库,并且由植被变化驱动的加速的河流碳侵蚀对全球碳循环具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号