首页> 外文OA文献 >Fast parallel sorting algorithms on GPUs
【2h】

Fast parallel sorting algorithms on GPUs

机译:GPU上的快速并行排序算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a comparative analysis of the three widely used parallel sorting algorithms: Odd-Even sort, Rank sort and Bitonic sort in terms of sorting rate, sorting time and speed-up on CPU and different GPU architectures. Alongside we have implemented novel parallel algorithm: min-max butterfly network, for finding minimum and maximum in large data sets. All algorithms have been implemented exploiting data parallelism model, for achieving high performance, as available on multi-core GPUs using the OpenCL specification. Our results depicts minimum speed-up19x of bitonic sort against odd-even sorting technique for small queue sizes on CPU and maximum of 2300x speed-up for very large queue sizes on Nvidia Quadro 6000 GPU architecture. Our implementation of full-butterfly network sorting results in relatively better performance than all of the three sorting techniques: bitonic, odd-even and rank sort. For min-max butterfly network, our findings report high speed-up of Nvidia quadro 6000 GPU for high data set size reaching 2^24 with much lower sorting time
机译:本文对三种广泛使用的并行排序算法(奇数-偶数排序,秩排序和Bitonic排序)进行了比较分析,其中包括排序速率,排序时间和CPU和不同GPU架构上的加速。除此以外,我们还实现了新颖的并行算法:最小-最大蝶形网络,用于在大型数据集中查找最小值和最大值。使用OpenCL规范在多核GPU上可以利用数据并行性模型实现所有算法,以实现高性能。我们的结果描述了在CPU上小的队列大小时,bitonic排序的最小速度提高了19倍,而在奇偶排序技术中,在Nvidia Quadro 6000 GPU架构上,对于非常大的队列来说,最大速度提高了2300倍。我们实现的全蝶形网络分类比所有三种分类技术(比特分类,奇偶分类和秩分类)都具有相对更好的性能。对于最小-最大蝶形网络,我们的研究结果报告称,Nvidia Quadro 6000 GPU的高速运行,可实现2 ^ 24的高数据集大小,并且排序时间大大缩短

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号