首页> 外文OA文献 >Automated segmentation of tissue images for computerized IHC analysis
【2h】

Automated segmentation of tissue images for computerized IHC analysis

机译:自动分割组织图像以进行计算机IHC分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents two automated methods for the segmentation ofimmunohistochemical tissue images that overcome the limitations of themanual approach aswell as of the existing computerized techniques. The first independent method, based on unsupervised color clustering, recognizes automatically the target cancerous areas in the specimen and disregards the stroma; the second method, based on colors separation and morphological processing, exploits automated segmentation of the nuclear membranes of the cancerous cells. Extensive experimental results on real tissue images demonstrate the accuracy of our techniques compared to manual segmentations; additional experiments show that our techniques are more effective in immunohistochemical images than popular approaches based on supervised learning or active contours. The proposed procedure can be exploited for any applications that require tissues and cells exploration and to perform reliable and standardized measures of the activity of specific proteins involved in multi-factorial genetic pathologies
机译:本文提出了两种自动的免疫组织化学组织图像分割方法,这些方法克服了人工方法以及现有计算机技术的局限性。第一种基于无监督颜色聚类的独立方法可以自动识别标本中的目标癌变区域,而忽略基质。第二种方法基于分色和形态学处理,利用癌细胞的核膜的自动分割。在真实组织图像上的大量实验结果证明了与手动分割相比,我们的技术的准确性;其他实验表明,与基于监督学习或活动轮廓的流行方法相比,我们的技术在免疫组织化学图像中更有效。所建议的程序可用于需要组织和细胞探索的任何应用,并对涉及多因素遗传病理的特定蛋白质的活性进行可靠且标准化的测量

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号