首页> 外文OA文献 >Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech
【2h】

Multiresolution analysis (discrete wavelet transform) through Daubechies family for emotion recognition in speech

机译:通过Daubechies家族进行多分辨率分析(离散小波变换)以进行语音情感识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a study of the mathematical properties of voice as an audio signal -- This work includes signals in which the channel conditions are not ideal for emotion recognition -- Multiresolution analysis- discrete wavelet transform – was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states -- ANNs proved to be a system that allows an appropriate classification of such states -- This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features -- Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify
机译:我们建议研究语音作为音频信号的数学特性-这项工作包括其中通道条件对于情感识别而言并不理想的信号-多分辨率分析-离散小波变换-通过使用Daubechies小波家族( Db1-Haar,Db6,Db8,Db​​10)允许将初始音频信号分解为系数集,然后对这些系数集进行提取并进行统计分析以区分情感状态-ANN被证明是一种允许适当地对此类状态进行分类-该研究表明,使用小波分解提取的特征足以分析和提取音频信号中的情感内容,从而在情感状态分类中呈现出较高的准确率,而无需使用其他种类的经典频率时间特征-因此,本文力求用数学方法刻画人类的六种基本情绪:无聊,沮丧ust,幸福,焦虑,愤怒和悲伤也包括中立,共有七个州

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号