首页> 外文OA文献 >Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE)
【2h】

Tuning of Adaptive Weight Depth Map Generation Algorithms Exploratory Data Analysis and Design of Computer Experiments (DOCE)

机译:自适应权重深度图生成算法的调优探索性数据分析和计算机实验(DOCE)设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In depth map generation algorithms, parameters settings to yield an accurate disparity map estimation are usually chosen empirically or based on un planned experiments -- Algorithms' performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury's standards -- This work shows a systematic statistical approach including exploratory data analyses on over 14000 images and designs of experiments using 31 depth maps to measure the relative inf uence of the parameters and to fine-tune them based on the number of bad pixels -- The implemented methodology improves the performance of adaptive weight based dense depth map algorithms -- As a result, the algorithm improves from 16.78% to 14.48% bad pixels using a classical exploratory data analysis of over 14000 existing images, while using designs of computer experiments with 31 runs yielded an even better performance by lowering bad pixels from 16.78% to 13%
机译:在深度图生成算法中,通常根据经验或基于计划外的实验来选择参数设置以产生准确的视差图估计-算法性能是根据Middlebury标准的算法结果与地面真相的距离来衡量的-这项工作展示了一种系统的统计方法,包括对超过14000张图像的探索性数据分析以及使用31个深度图的实验设计,以测量参数的相对影响并根据不良像素的数量对其进行微调-实现的方法改进了基于自适应权重的密集深度图算法的性能-结果是,通过对超过14000张现有图像进行经典探索性数据分析,同时使用31次运行的计算机实验设计,该算法将不良像素从16.78%提高到了14.48%通过将不良像素从16.78%降低到13%来获得更好的性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号