首页> 外文OA文献 >Self-Learning Fuzzy Spiking Neural Network as a Nonlinear Pulse-Position Threshold Detection Dynamic System Based on Second-Order Critically Damped Response Units
【2h】

Self-Learning Fuzzy Spiking Neural Network as a Nonlinear Pulse-Position Threshold Detection Dynamic System Based on Second-Order Critically Damped Response Units

机译:基于二阶临界阻尼响应单元的自学习模糊尖峰神经网络作为非线性脉冲位置阈值检测动态系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.
机译:概述了模糊聚类任务中自学习尖峰神经网络的结构和学习算法。考虑了用于输入数据的脉冲位置转换的模糊接受神经元。提出了一种基于拉普拉斯变换的经典自动控制理论装置来处理尖峰神经网络。结果表明,通过二阶阻尼响应单元可以轻松地对突触功能进行建模。尖峰神经元躯体被表示为阈值检测单元。因此,所提出的模糊尖峰神经网络是一种模拟数字非线性脉冲位置动态系统。演示了如何在提出的尖峰神经网络的基础上实现模糊概率和可能性聚类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号