首页> 外文OA文献 >Cultural Knowledge for Named Entity Disambiguation: A Graph-Based Semantic Relatedness Approach
【2h】

Cultural Knowledge for Named Entity Disambiguation: A Graph-Based Semantic Relatedness Approach

机译:用于命名实体歧义消除的文化知识:基于图的语义关联方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the ultimate aims of Natural Language Processing is toautomate the analysis of the meaning of text. A fundamental step in thatdirection consists in enabling effective ways to automatically link textualreferences to their referents, that is, real world objects. The work presentedin this paper addresses the problem of attributing a sense to proper namesin a given text, i.e., automatically associating words representing NamedEntities with their referents. The method for Named Entity Disambiguationproposed here is based on the concept of semantic relatedness, which in thiswork is obtained via a graph-based model over Wikipedia. We show that,without building the traditional bag of words representation of the text,but instead only considering named entities within the text, the proposedmethod achieves results competitive with the state-of-the-art on two differentdatasets.
机译:自然语言处理的最终目的之一是自动化文本含义的分析。朝这个方向迈出的基本步骤包括:采用有效的方式将文本引用自动链接到其引用对象,即现实世界对象。本文中介绍的工作解决了在给定文本中为专有名称赋予某种意义的问题,即自动将代表NamedEntities的单词与其参考对象相关联。这里提出的命名实体消除歧义的方法基于语义相关性的概念,在这项工作中,它是通过Wikipedia上基于图的模型获得的。我们表明,在不构建文本的传统单词表示袋的情况下,该提议的方法只考虑了文本中的命名实体,而是在两个不同的数据集上获得了与最新技术相当的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号