首页> 外文OA文献 >Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks
【2h】

Electrocardiogram (ECG) signal modeling and noise reduction using wavelet neural networks

机译:使用小波神经网络的心电图(ECG)信号建模和降噪

摘要

Electrocardiogram (ECG) signal has been widely used in cardiac pathology to detect heart disease. In this paper, wavelet neural network (WNN) is studied for ECG signal modeling and noise reduction. WNN combines the multi-resolution nature of wavelets and the adaptive learning ability of artificial neural networks, and is trained by a hybrid algorithm that includes the adaptive diversity learning particle swarm optimization (ADLPSO) and the gradient descent optimization. Computer simulation results demonstrate this proposed approach can successfully model the ECG signal and remove high-frequency noise.
机译:心电图(ECG)信号已在心脏病理学中广泛用于检测心脏病。本文研究了小波神经网络(WNN)进行心电信号建模和降噪。 WNN结合了小波的多分辨率性质和人工神经网络的自适应学习能力,并通过一种混合算法进行训练,该算法包括自适应分集学习粒子群优化(ADLPSO)和梯度下降优化。计算机仿真结果表明,该方法可以成功地对ECG信号建模并消除高频噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号