首页> 外文OA文献 >A Valve Design Methodology For Improved Reciprocating Compressor Performance
【2h】

A Valve Design Methodology For Improved Reciprocating Compressor Performance

机译:改善往复式压缩机性能的阀门设计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The current work directly relates valve dynamics to the compressor energy efficiency. Majority of the previous studies have focused on reducing pressure losses due to valve geometry, towards improved compressor performance. On a complimentary note, analyzing the valve ‘flutter’ leads to a holistic valve development methodology. Traditionally, pressure actuated reed valves have been used in reciprocating hermetic compressors on the suction and discharge ports. A characteristic of these valve operation is the multiple opening and closing motions, during a single suction and discharge pulse, often referred to as the ‘valve flutter’. This is more prominent for the suction reed considering the longer (crank-angle) duration of the suction process. The valve dynamics is a highly coupled fluid structure interaction problem. In the present work, the reed valve dynamics has been simplified to a single degree of freedom spring mass system and is captured by a mathematical model within a 15% accuracy range for displacement prediction. Considering the current stage of development, this is within acceptable limits. To validate this model, in-compressor valve lift measurements (direct strain gauge measurements) in a closed loop refrigeration rig have been used. Considering the complexity and time involved with the in-compressor measurements, a simplified framework to characterize the dynamics of reed valves outside the compressor (indirect measurements) has also been proposed and developed. Since the basis of this study is analyzing the characteristic valve dynamics, physics-based transfer functions can translate these measurements to the actual compressor reed motion leading to a faster design cycle. Also, CFD has been used to provide a detailed insight to the flow physics. With all of the above inputs, the mathematical models help identifying key design parameters and help evaluate conceptual designs towards an ideal/ chosen valve response.
机译:当前的工作将阀门动力学与压缩机能效直接相关。先前的研究大多集中在减少由于阀门几何形状而引起的压力损失,以改善压缩机性能。值得一提的是,分析阀门的“颤振”可以得出整体的阀门开发方法。传统上,压力致动的簧片阀已用于在吸入口和排出口上使封闭式压缩机往复运动。这些阀操作的特征是在单个吸气和排气脉冲期间多次打开和关闭运动,通常被称为“阀门颤动”。考虑到抽吸过程的持续时间(曲柄角)更长,这对于抽吸簧片更为突出。阀动力学是高度耦合的流体结构相互作用问题。在目前的工作中,簧片阀动力学已简化为单自由度弹簧质量系统,并被数学模型捕获,该数学模型在15%的精度范围内进行位移预测。考虑到当前的开发阶段,这在可接受的范围内。为了验证该模型,已使用闭环制冷设备中的压缩机内气门升程测量值(直接应变仪测量值)。考虑到压缩机内测量所涉及的复杂性和时间,还提出了一种简化的框架来表征压缩机外部簧片阀的动态特性(间接测量)。由于这项研究的基础是分析阀的动态特性,因此基于物理的传递函数可以将这些测量值转换为实际的压缩机簧片运动,从而加快设计周期。此外,CFD已用于提供对流动物理学的详细了解。通过上述所有输入,数学模型有助于识别关键设计参数,并有助于评估概念设计,以达到理想/选定的阀门响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号