首页> 外文OA文献 >Efficient and Robust Training Methodology for Inverse Building Modeling and Its Application to a Multi-zone Case Study
【2h】

Efficient and Robust Training Methodology for Inverse Building Modeling and Its Application to a Multi-zone Case Study

机译:逆向建模的高效鲁棒训练方法及其在多区域案例研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an efficient and robust parameter training methodology, based on a previous approach for inverse building modeling that utilizes a simplified state-space approach. One new element of this training methodology is that some seasonal effects, such as variation of window transmittance at different times of the year, are taken into consideration and captured during the training process. In addition, a mixed-mode training approach is developed that allows the use of a combination of data obtained when cooling or heating is occurring with the zone temperature under control at setpoint and when the zone temperature is floating during periods of no load. To obtain a “nearly” global optimal model, a multi-start search method was found to be robust and provide good computational efficiency and accurate results. The training methodology is implemented to model three zones of Building 101 at the Navy Ship Yard in Philadelphia, Pennsylvania.
机译:本文基于先前的利用简化的状态空间方法进行逆向建模的方法,提出了一种有效且鲁棒的参数训练方法。这种培训方法的一个新元素是在培训过程中考虑并捕获了一些季节性影响,例如一年中不同时间的窗户透射率变化。另外,开发了一种混合模式训练方法,该方法允许使用在区域温度在设定点控制下发生冷却或加热时以及区域温度在空载期间处于浮动状态时获得的数据的组合。为了获得“近乎”的全局最优模型,人们发现一种多起点搜索方法是可靠的,并提供了良好的计算效率和准确的结果。实施了该培训方法,以对宾夕法尼亚州费城的海军造船厂的101号楼的三个区域进行建模。

著录项

  • 作者

    Cai Jie; Braun James E.;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号