首页> 外文OA文献 >Growth mechanism and electrochemical properties of Transition metal oxide nanostructures Mn3O4 and α-Fe2O3
【2h】

Growth mechanism and electrochemical properties of Transition metal oxide nanostructures Mn3O4 and α-Fe2O3

机译:过渡金属氧化物纳米结构Mn3O4和α-Fe2O3的生长机理和电化学性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis describes the growth and properties of epitaxially grown manganese oxide (Mn304) and iron oxide (Fe203)nanocrystals. A 2-step phase separation approach has been employed to achieve nanostructures with controlled surfaceorientation. AFM, SEM and TEM have all been carried out to determine the topography, as well as interfacial relationshipbetween substrate and sample. It provides a thorough investigation of the structural formation mechanism and how they correlateto the overall chemical and physical properties. ( 10 1) oriented M0304 is used as an example to demonstrate terrace formation onthe surface of individual island as a result of impurities. Terraces spirals in both right and left handed direction have beenobserved, with the upward climb distance approximately equal to half of the c-axis. The effect of increasing deposition frequencywas also investigated. Mn304 deposited at high frequency exhibited much larger and flatter structures. This can be explained byadatom arrangement, where at higher deposition frequency adatoms have less time to achieve 'vertical climb' hence resulting inflatter nano-islands.Having an understanding ofnanostructure formation also allows us to explore the electrochemical properties of(OOI) (101) and(I 12) orientations of Mn304. 1 0,000 cyclic voltammetry cycles have been run and repeated for each sample. Results suggest thatthe ( 112) orientation had the highest reactivity. Simulated atomic model of all three orientations confirms that theelectrochemical response increase corresponds to higher induced dipole moment. This is because increased number of dipolemoments can cause surface instability that is more prone to electrochemical reactions.The study into the interplay between surface morphology and property has been extended to iron oxide nanocrystals (a-F20 3).We found resistive switching behaviors when measured under conductive C-AFM, under applied voltage between -5V to +5V onnanocrystals between height range 25nm to 45nm. We observe hysteresis loop under reverse bias which exhibit rectifier diodebehaviour, which also increases with nanocrystal height. This phenomenon is attributed to the alternation of Fe between the 2+and 3+ valence states which is enhanced in larger (taller) nanocrystals.
机译:本文描述了外延生长的氧化锰(Mn304)和氧化铁(Fe2O3)纳米晶体的生长及其性能。已经采用两步相分离方法来实现具有受控表面取向的纳米结构。原子力显微镜,扫描电镜和透射电镜都可以用来确定形貌,以及基底和样品之间的界面关系。它提供了对结构形成机理以及它们如何与整体化学和物理性质相关的透彻研究。 (10 1)取向的M0304被用作示例,以演示由于杂质而在各个岛表面形成梯形的情况。已经观察到梯田在左右手方向上都呈螺旋形,向上爬升距离大约等于c轴的一半。还研究了增加沉积频率的影响。高频沉积的Mn304具有更大,更平坦的结构。这可以通过原子排列来解释,在较高的沉积频率下,原子较少的时间来实现``垂直爬升'',因此产生了膨胀的纳米岛。了解纳米结构的形成还使我们能够探索(OOI)(101)和Mn304的(I 12)取向。已对每个样品运行1 000次循环伏安循环,并重复进行。结果表明(112)取向具有最高的反应性。所有三个方向的模拟原子模型证实,电化学响应的增加对应于更高的感应偶极矩。这是因为偶极矩数量增加会导致表面不稳定,更容易发生电化学反应。对表面形态与性能之间相互作用的研究已经扩展到氧化铁纳米晶体(a-F20 3)。在C-AFM导电条件下,在-5V至+ 5V的施加电压下,在25nm至45nm高度范围内的纳米晶体上。我们观察到反向偏压下的磁滞回线表现出整流二极管的行为,该行为也随着纳米晶体高度的增加而增加。这种现象归因于Fe在2+和3+价态之间的交替,这在较大(更taltal)的纳米晶体中得到增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号