首页> 外文OA文献 >Optimal provision of end-user energy services through intelligent scheduling of distributed generation, storage, and controllable load resources
【2h】

Optimal provision of end-user energy services through intelligent scheduling of distributed generation, storage, and controllable load resources

机译:通过智能调度分布式发电,存储和可控负载资源,为终端用户能源服务提供最佳的服务

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The electricity industry is plagued by technical and economic challenges due to increasing demand for energy services, increasing reliability requirements, and concerns on climate change. It can be assisted in these challenges by including the potential contributions of the demand-side to optimize its operation. This may be achieved by utilizing decentralized generating, storage, and controllable load resources and by engaging in distributed decision-making.This thesis presents a novel energy service decision-support tool (ES-DST) that consumers can use to optimize the acquisition of their energy services. The tool is composed of an energy service model and a scheduler for distributed energy resources (DER). The model is based on the consumers putting different levels of benefit to services at different times of the day, and it assigns this benefit to the energy that realizes the service. The scheduling algorithm determines how controllable DER available to the consumers may be operated to maximize their net benefit based on the energy service and DER models, and DER technical characteristics and capabilities. The ES-DST may be utilized to control DER in the household level, supporting the concept of a ‘smart’ home, or within a large building or group of buildings, supporting the concept of a microgrid or a virtual power plant.The capabilities of the ES-DST are demonstrated using a ‘smart’ home case study. It is used to create deterministic DER schedules under different electricity tariff structures. It is also used to formulate robust day-ahead and real-time operating schedules with stochastic energy service demand, DER availability, and activation of dynamic peak pricing (DPP). The simulation results could give consumers insights on how to operate their DER to maximize their benefits, and give industry managers the potential impacts of price-based demand response programs like time-of-use rates, DPP, and net feed-in tariffs. The ES-DST is also used to determine the value added by the coordination among DER, and to identify the forecasted information that are crucial to making effective schedules. The scheduling of DER is a challenging optimization problem; hence, a heuristic simulation-based approach based on particle swarm optimization (PSO) is used. Improvements to the PSO are also presented, and are demonstrated to generate effective schedules for more complex problems within manageable computation times.
机译:由于对能源服务的需求不断增加,可靠性要求不断提高以及对气候变化的关注,电力行业受到技术和经济挑战的困扰。通过包括需求方的潜在贡献以优化其运营,可以为这些挑战提供帮助。这可以通过利用分散的发电,存储和可控制的负载资源并通过参与分布式决策来实现。本文提出了一种新型的能源服务决策支持工具(ES-DST),消费者可以使用它来优化他们的获取能源服务。该工具由能源服务模型和分布式能源(DER)调度程序组成。该模型基于消费者在一天中的不同时间为服务提供不同级别的收益,并将该收益分配给实现服务的能量。调度算法根据能源服务和DER模型以及DER技术特征和能力,确定如何操作可用于消费者的DER,以最大程度地增加消费者的净收益。 ES-DST可用于控制家庭级别的DER,以支持“智能”房屋的概念,或在大型建筑物或建筑物群内,支持微电网或虚拟电厂的概念。 ES-DST使用“智能”家庭案例研究进行了演示。它用于创建不同电价结构下的确定性DER时间表。它还用于制定具有随机能源服务需求,DER可用性和激活动态峰值定价(DPP)的强大的日前和实时运营计划。仿真结果可以为消费者提供有关如何操作其DER的见解,以最大程度地发挥其收益,并为行业经理提供基于价格的需求响应程序(如使用时间率,DPP和净馈入关税)的潜在影响。 ES-DST还用于确定DER之间的协调所增加的价值,并确定对于制定有效计划至关重要的预测信息。 DER的调度是一个具有挑战性的优化问题。因此,使用了基于启发式仿真的基于粒子群优化(PSO)的方法。还提出了对PSO的改进,并被证明可以在可管理的计算时间内为更复杂的问题生成有效的时间表。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号