首页> 外文OA文献 >Performance and safety of centrifugal chillers using hydrocarbons.
【2h】

Performance and safety of centrifugal chillers using hydrocarbons.

机译:使用碳氢化合物的离心式制冷机的性能和安全性。

摘要

The high ozone depletion and global warming potentials of fluorocarbon refrigerants have resulted in prohibitions and restrictions in many markets. Hydrocarbon refrigerants have low environmental impacts and are successfully used in domestic refrigerators and car air conditioners but replacing fluorocarbons in centrifugal chillers for air conditioning applications is unknown. Hydrocarbon replacements need a heat transfer correlation for refrigerant in flooded evaporators and predictions for operating conditions, capacity and performance. Safety precautions for large quantities of hydrocarbon refrigerants are needed and control of overpressure in plantrooms requires accurate prediction.Reliable correlations exist for forced convection in a single phase flow, condensation outside tubes and evaporation off sprayed tubes. For flooded evaporators this thesis proposes a new correlation for forced convection boiling of any refrigerant. An enhancement factor is combined with a modified Chen coefficient using recent pool boiling and forced convection correlations outside tubes. This correlates within typically a factor of two to known boiling literature measurements for CFC-113, CFC-11, HCFC-123, HFC-134a and HC-601.The operating conditions, capacity and performance of replacement hydrocarbons in centrifugal chillers were predicted using fluorocarbon performance as a model. With the new heat transfer correlation hydrocarbon predictions for flooded evaporators were made. For any fluorocarbon refrigerant there exists a replacement mixture of hydrocarbons which with a rotor speed increase about 40% gives the same cooling capacity in the same centrifugal chiller under the same operating conditions. For example replacing HCFC-123 in a flooded evaporator with HC-601/602 [90.4/9.6] and increasing the rotor speed by 43% will increase the coefficient of performance by 4.5% at the same cooling capacity.The maximum plantroom overpressure considered was from leakage and ignition of a uniform air/refrigerant mixture with maximum laminar burning velocity. Flow was modelled using a turbulence viscosity due to Launder and Spalding and turbulent deflagration using a reaction progress variable after Zimont. These partial differential equations were solved approximately for two and three dimensional geometries using finite volume methods from the Fluent program suite. Simple overpressure predictions from maximum flame area approximations agreed with Fluent results within 13.7% promising safe plantroom design without months of computer calculation.
机译:臭氧消耗量大和碳氟制冷剂的全球变暖潜力已导致许多市场受到禁止和限制。碳氢化合物制冷剂对环境的影响很小,已成功用于家用冰箱和汽车空调,但在空调的离心式制冷机中替代碳氟化合物尚不明确。碳氢化合物的替代需要与淹没式蒸发器中制冷剂的传热相关性,以及对运行条件,容量和性能的预测。需要大量烃制冷剂的安全预防措施,并且需要对机房中的超压进行控制才能进行准确预测。单相流中的强制对流,管外冷凝和喷管蒸发均存在可靠的相关性。对于淹没式蒸发器,本文提出了一种新的相关性,用于任何制冷剂的强制对流沸腾。使用最近的池沸腾和管外强制对流相关性,将增强因子与修正的Chen系数结合在一起。这通常与CFC-113,CFC-11,HCFC-123,HFC-134a和HC-601的沸腾文献测量值之间的相关系数通常为两倍。使用以下方法预测了离心式制冷机中的替代碳氢化合物的运行条件,容量和性能以碳氟化合物的性能为模型。利用新的传热相关性,对淹没式蒸发器进行了碳氢化合物预测。对于任何碳氟化合物制冷剂,都存在碳氢化合物的替代混合物,当转子转速增加约40%时,在相同的运行条件下,相同的离心式制冷机将具有相同的冷却能力。例如,用HC-601 / 602 [90.4 / 9.6]代替满液式蒸发器中的HCFC-123,并将转子速度提高43%,在相同的冷却能力下,性能系数将提高4.5%。泄漏和着火的原因:均匀的空气/制冷剂混合物以最大的层流燃烧速度燃烧。流动是使用Launder和Spalding引起的湍流粘度和Zimont之后的反应进度变量进行湍流爆燃建模的。使用Fluent程序套件中的有限体积方法,可以针对二维和三维几何近似求解这些偏微分方程。从最大火焰面积近似值进行的简单超压预测与Fluent结果相吻合,在13.7%内保证了安全的机房设计,而无需数月的计算机计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号