首页> 外文OA文献 >Application of microbial biofilms for the production of chemicals
【2h】

Application of microbial biofilms for the production of chemicals

机译:微生物生物膜在化学品生产中的应用

摘要

Microbial biofilms have been proposed as robust, self-immobilized and self-regenerating catalysts. As a model study, this thesis provides an example for the design and operation of a catalytic biofilm process for the production of chemicals.The capacity to form single-species biofilms was evaluated for 68 strains of microorganisms to estimate the scope of biofilms for catalytic application. By changing substratum characteristics, inoculum density and nutrient availability, 66 strains (97%) demonstrated biofilm formation and 36 strains (53%) were classified as strong biofilm formers. The abundance of biofilm forming microbes demonstrates a broad potential for biofilm application in chemical production processes.With the aim to develop a biofilm process for ethylene glycol biotransformation, 62 bacterial and yeast strains were screened for ethylene glycol conversion. Pseudomonas putida JM37 displayed the highest substrate conversion rate and was selected as a potential catalyst for the production of glyoxylic acid. Based on published metabolic pathways for P. putida, tartronate semialdehyde synthase (gcl), malate synthase (glcB) and isocitrate lyase (aceA) were identified as targets for gene disruption to block the further conversion of glyoxylic acid. Single and double knockout mutants of gcl, glcB and aceA were generated by transposon and site-directed mutagenesis. Glyoxylic acid conversion was not affected by these mutations, which indicates that gcl, glcB and aceA are not essential for glyoxylic acid metabolism in P. putida JM37. As a biofilm former with good glycolic acid productivity, Pseudomonas diminuta was chosen for the evaluation of a trickle-bed biofilm reactor with structured packing.Structured packing is efficient for gas-liquid exchange in chemical catalysis. The current study is the first to employ structured packing as biofilm substratum, and an aerated continuous biofilm reactor system was designed. P. diminuta established an active biofilm and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months. A steady-state productivity of up to 1.6 gl-1h-1 was achieved, with excellent process robustness and reproducibility. The results demonstrate the potential of structured packing as biofilm substratum for the production of chemicals. Implementation is recommended for whole-cell processes which require improved catalyst stability, catalyst retention for continuous operation, or efficient gas-liquid exchange.
机译:微生物生物膜已被提出作为坚固,自固定和自再生的催化剂。作为模型研究,本论文为化学生产的催化生物膜工艺的设计和操作提供了一个实例。评估了68种微生物的单种生物膜形成能力,以评估生物膜在催化应用中的范围。 。通过改变基质特性,接种密度和养分利用率,有66个菌株(97%)显示出生物膜形成,有36个菌株(53%)被归类为强生物膜形成剂。生物膜形成微生物的丰富性证明了生物膜在化学生产过程中的广泛应用潜力。为了开发一种用于乙二醇生物转化的生物膜方法,筛选了62种细菌和酵母菌株进行了乙二醇转化。恶臭假单胞菌JM37显示出最高的底物转化率,并被选作生产乙醛酸的潜在催化剂。基于恶臭假单胞菌的已公开的代谢途径,将tartronate半醛合酶(gcl),苹果酸合酶(glcB)和异柠檬酸裂合酶(aceA)确定为基因破坏的靶标,以阻止乙醛酸的进一步转化。 gcl,glcB和aceA的单和双敲除突变体是通过转座子和定点诱变产生的。乙醛酸转化不受这些突变的影响,这表明gcl,glcB和aceA对恶臭假单胞菌JM37中的乙醛酸代谢不是必需的。作为具有良好乙醇酸生产率的生物膜形成剂,Pseudomonas diminuta被选择用于评估具有规整填料的滴流床生物膜反应器。结构填料对于化学催化中的气液交换是有效的。当前的研究是第一个采用结构化填料作为生物膜基质的研究,并设计了一个充气连续生物膜反应器系统。 P. diminuta建立了一个活性生物膜,并催化乙二醇氧化为乙醇酸两个多月。实现了高达1.6 gl-1h-1的稳态生产率,并具有出色的工艺稳定性和可重复性。结果证明了结构填充作为生物膜基质用于化学生产的潜力。建议对需要改进催化剂稳定性,催化剂保持连续运行或有效气液交换的全电池工艺实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号