首页> 外文OA文献 >Electronic and optical characterisations of silicon quantum dots and its applications in solar cells
【2h】

Electronic and optical characterisations of silicon quantum dots and its applications in solar cells

机译:硅量子点的电子和光学表征及其在太阳能电池中的应用

摘要

In this thesis, the structural, optical and electrical properties of crystalline silicon quantum dots (SiQDs) are examined for application to silicon based tandem cells. The approach has been to concentrate on all silicon devices by taking advantage of quantum confinement in low-dimensional Si. RF magnetron co-sputtering provided the capability of creating superlattice structures in conjunction with high temperature annealing, to form Si nanocrystals in an oxide matrix. Structural techniques, including Fourier transform infrared spectroscopy (FTIR), micro-Raman spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Secondary ion mass spectroscopy (SIM) were employed to gather structural information about the SiQD/SiO2 SLs. The result combine presents that the packing density of Si QDs, correlated to the oxygen content of the silicon rich oxide layer can be control independently.The effect of Si nanocrystallite density on Raman scattering is investigated. The preliminary results present that a decrease in the oxygen content (x) results in an increased sharpness of the Strokes-mode peak of nanocrystalline Si, attributed to an increase in the proportion of crystalline Si because of the increased number of SiQDs. However the influence of the surface region on the crystallite core intensity scattering becomes dominant, when SiQD size diameter is very small (less than 3 nm). The present work shows that a decrease in x-content leading to an increase of the SiQD concentration, initially results in the enhancement of the lateral conductivity in the SiQD superlattice material.In this work, the Al contacting scheme, using a prolonged heat treatment technique at elevated temperature less than the eutectic point of Al and Si (577C) has been successfully applied to making Ohmic contacts on both SiQD SLs in oxide and nitride matrices. Activation energy (Ea) of SiQDs, extracted from a linear Arrhenius plot is investigated in the present work in order to expand the understanding of engineering electrical injection in laterally active paths. It is found that a lower barrier height of dielectric matrix influences to the lateral electron transport of the SiQDs in such dielectric matrix. PL results confirm that the band gap of surface oxidized SiQDs widens due to quantum confinement. The present results reveal that the strong peak (Q-peak) due to quantum confinement is more effective in the emission with increasing SiQD concentration. The surface oxide is believed to play an important role in the reduction of SiQD luminescence due to a trapped exiciton. It is concluded that SiQDs surface oxide accompanied by a SiO2 matrix may not provide a good passivation in very small SiQD size. However the energy band gap and conductivity of the SiQDs are tunablity, in the optimum range of SiQD size and concentration. This observation may be important for future nanoelectronics applications.
机译:本文研究了晶体硅量子点(SiQDs)的结构,光学和电学性质,以应用于基于硅的串联电池。该方法一直是通过利用低维Si中的量子限制来集中所有硅器件。射频磁控共溅射技术提供了结合高温退火产生超晶格结构的能力,从而在氧化物基质中形成Si纳米晶体。结构技术包括傅里叶变换红外光谱(FTIR),微拉曼光谱,透射电子显微镜(TEM),X射线衍射(XRD)和二次离子质谱(SIM)被用来收集有关SiQD / SiO2 SLs。结果表明,Si QDs的堆积密度与富硅氧化物层的氧含量相关,可以独立控制。研究了Si纳米微晶密度对拉曼散射的影响。初步结果表明,氧含量(x)的减少会导致纳米晶Si的Strokes-mode峰的清晰度增加,这归因于由于SiQD数量增加而导致的结晶Si比例的增加。但是,当SiQD尺寸直径非常小(小于3 nm)时,表面区域对微晶核强度散射的影响变得占主导。目前的工作表明,x含量的减少导致SiQD浓度的增加,最初导致了SiQD超晶格材料的横向电导率的提高。在这项工作中,Al接触方案采用了延长的热处理技术在高温下,低于Al和Si的共晶点(577C)已成功应用于在氧化物和氮化物基质中的SiQD SL上形成欧姆接触。在本工作中,研究了从线性阿伦尼乌斯图提取的SiQD的活化能(Ea),以扩展对横向活动路径中工程电注入的理解。已经发现,介电基质的较低的势垒高度影响在这种介电基质中的SiQD的横向电子传输。 PL结果证实,由于量子限制,表面氧化的SiQD的带隙变宽。目前的结果表明,由于量子限制,随着SiQD浓度的增加,强峰(Q峰)在发射中更有效。据信表面氧化物由于被困的激子在减少SiQD发光中起重要作用。结论是,在非常小的SiQD尺寸下,伴随有SiO2基质的SiQDs表面氧化物可能无法提供良好的钝化作用。但是,在最佳的SiQD尺寸和浓度范围内,SiQD的能带隙和电导率是可调谐的。该观察对于将来的纳米电子应用可能是重要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号