首页> 外文OA文献 >Capturing non-exchangeable dependence in multivariate loss processes with nested Archimedean Lévy copulas
【2h】

Capturing non-exchangeable dependence in multivariate loss processes with nested Archimedean Lévy copulas

机译:使用嵌套的ArchimedeanLévycopulas捕获多元损失过程中的不可交换依赖性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The class of spectrally positive Lévy processes is a frequent choice for modelling loss processes in areas such as insurance or operational risk. Dependence between such processes (for example, between different lines of business) can be modelled with Lévy copulas. This approach is a parsimonious, efficient, and flexible method which provides many of the advantages akin to distributional copulas for random variables. Literature on Lévy copulas seems to have primarily focused on bivariate processes. When multivariate settings are considered, these usually exhibit an exchangeable dependence structure (whereby all subset of the processes have an identical marginal Lévy copula). In reality, losses are not always associated in an identical way, and models allowing for non-exchangeable dependence patterns are needed. In this paper, we present an approach which enables the development of such models. Inspired by ideas and techniques from the distributional copula literature we investigate the procedure of nesting Archimedean Lévy copulas. We provide a detailed analysis of this construction, and derive conditions under which valid multivariate (nested) Lévy copulas are obtained. Our results are discussed and illustrated, notably with an example of model fitting to data.
机译:在保险或运营风险等领域,通常使用光谱正Lévy过程类别来对损失过程进行建模。可以使用Lévycopulas对此类流程之间(例如,不同业务类别之间)的依赖关系进行建模。这种方法是一种简约,有效且灵活的方法,它提供了许多与随机变量的分布copula相似的优点。关于Lévycopulas的文献似乎主要集中于双变量过程。当考虑多变量设置时,它们通常表现出可交换的依赖结构(因此,过程的所有子集都具有相同的边际Lévycopula)。实际上,损失并不总是以相同的方式关联,因此需要允许不可交换依赖模式的模型。在本文中,我们提出了一种能够开发此类模型的方法。受分布系动词文献的思想和技术的启发,我们研究了嵌套阿基米德列维系动词的过程。我们提供了对此构造的详细分析,并推导了获得有效的多变量(嵌套)Lévycopulas的条件。我们讨论并举例说明了我们的结果,特别是举例说明了适合数据的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号