首页> 外文OA文献 >Obstacle Avoidance for Multi-agent Path Planning Based on Vectorized Particle Swarm Optimization
【2h】

Obstacle Avoidance for Multi-agent Path Planning Based on Vectorized Particle Swarm Optimization

机译:基于矢量化粒子群算法的多主体路径规划避障

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper deals with an approach to path planning by obstacle avoidancefor multi-agent systems. An effective framework is presented based on theParticle Swarm Optimization (PSO) method; an evolutionary computation(EC) technique that uses the dynamics of the swarm to search the solutions for theoptimization problems. It describes the path replanning technique and obstacleavoidance for autonomous multi-agent systems. A simultaneous replanning conceptis incorporated into the path planning to avoid both static and dynamic obstacles.This proposed algorithm reduces the computational time of the path planning. In thedynamic environment, the numerical results show that the Simultaneous ReplanningVectorized Particle Swarm Optimization (SRVPSO) algorithm is effective andalso efficient for multi-agent systems.
机译:本文讨论了一种通过多智能体系统避障进行路径规划的方法。提出了一种基于粒子群算法的有效框架。一种进化计算(EC)技术,该算法使用群体动态来搜索解决方案中的优化问题。它描述了自主多代理系统的路径重新规划技术和避障。路径规划中引入了同时重新规划的概念,以避免静态和动态障碍。该算法减少了路径规划的计算时间。在动态环境中,数值结果表明,同时重新规划矢量化粒子群优化算法(SRVPSO)对于多智能体系统既有效又有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号