首页> 外文OA文献 >Magnetic, ferroelectric and structural phenomena in rare earth manganite and ferrite systems: Raman spectroscopy and neutron diffraction studies
【2h】

Magnetic, ferroelectric and structural phenomena in rare earth manganite and ferrite systems: Raman spectroscopy and neutron diffraction studies

机译:稀土锰矿和铁氧体系统中的磁性,铁电和结构现象:拉曼光谱和中子衍射研究

摘要

The discovery of emergent phenomena arising from the interplay between magnetism, ferroelectricity and structure in multiferroic materials provides a myriad of potential capabilities in future solid state technologies. Despite extensive investigations in this field, many unsolved issues surround magnetoelectric coupling in several multiferroic systems, and in many cases there are competing approaches that attempt to describe their underlying mechanisms. Collectively, the projects in this thesis represent a two-pronged approach that utilises the complementary techniques of Raman light scattering and neutron diffraction as a means to investigate the contentious role of crystal structure in magnetoelectric coupling for the type-II multiferroic RMnO3 (R = Tb, Dy) and RMn2O5 systems (R = Tb, Ho, Y), and furthermore in potentially-multiferroic ErFeO3.The isotopic substitution of oxygen-18 significantly modifies the lattice dynamics of transition-metal oxide systems. In many materials, this can result in isotope-induced shifts in magnetic, ferroelectric, or superconducting phase transition temperatures that provide new understanding into the underlying physical processes that define their properties. Remarkably, oxygen-isotope substitution in RMnO3 (R = Tb, Dy) systems does not alter the onset of the multiferroic regime, indicating that magnetoelectric coupling is primarily a magnetically-driven phenomenon within these compounds. The combination of Raman scattering and neutron diffraction techniques allowed several key insights to be obtained. For both RMnO3 and RMn2O5 systems, Raman spectroscopy revealed that magnetically-driven ferroelectricity imposes significant effects that alter mode energies and lifetimes which indicate displacement-induced ferroelectricity. Furthermore, we observe remarkable structural behaviours in the form of altered bond lengths or faint Bragg reflections that indicate the existence of symmetry breaking. Our Raman study on ErFeO3 presents evidence of broken symmetry hitherto unobserved, as well as the interplay between magnetism and structure from strong interactions between different magnetic sublattices. Our combined approach provides crucial answers in understanding the emergent phenomena derived from the complex interplay between magnetic, ferroelectric and structural properties within these materials.
机译:由多铁性材料中的磁性,铁电和结构之间的相互作用引起的新兴现象的发现为未来的固态技术提供了无数的潜在能力。尽管在该领域进行了广泛的研究,但是许多多铁性系统中的磁电耦合仍围绕着许多未解决的问题,并且在许多情况下,存在竞争性方法试图描述其潜在机理。总的来说,本论文的项目代表了一种两管齐下的方法,该方法利用拉曼光散射和中子衍射的互补技术来研究晶体结构在II型多铁RMnO3的磁电耦合中的竞争作用(R = Tb ,Dy)和RMn2O5系统(R = Tb,Ho,Y),以及潜在的多铁性ErFeO3。氧18的同位素取代显着改变了过渡金属氧化物系统的晶格动力学。在许多材料中,这可能导致同位素引起的磁,铁电或超导相变温度变化,从而为定义其性质的基本物理过程提供了新的认识。值得注意的是,RMnO3(R = Tb,Dy)系统中的氧-同位素取代不会改变多铁性体系的发生,表明磁电耦合主要是这些化合物中的磁驱动现象。拉曼散射和中子衍射技术的结合使得可以获得一些关键见解。对于RMnO3和RMn2O5系统,拉曼光谱表明,磁驱动铁电施加了显着影响,改变了模态能量和寿命,表明位移感应铁电。此外,我们以改变的键长或微弱的布拉格反射形式观察到了显着的结构行为,表明存在对称破坏。我们对ErFeO3的拉曼研究提供了迄今未发现的对称性破坏的证据,以及不同磁性亚晶格之间强相互作用引起的磁性与结构之间的相互作用。我们的综合方法为理解由这些材料中的磁,铁电和结构特性之间的复杂相互作用而产生的新兴现象提供了关键的答案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号