首页> 外文OA文献 >Mathematical modelling of gas-solid flow and thermal behaviour in an ironmaking blast furnace
【2h】

Mathematical modelling of gas-solid flow and thermal behaviour in an ironmaking blast furnace

机译:炼铁高炉中气固流动和热行为的数学模型

摘要

The ironmaking blast furnace (BF) remains the most significant and important process for the production of liquid iron. For the achievement of stable furnace operation and good performance, mathematical modellings at different levels increasingly become a powerful tool in developing better understanding of this multiphase flow system, in particular the gas-solid flow. This thesis represents an effort in this area.A simplified and continuum-based mathematical model is proposed and tested to predictthe BF gas-solid flow at a macroscopic level. The results show that the simple model isable to predict the general features of the solid flow, including the effects of gas andsolid flowrates, and materials properties. The simplified model can be readilyimplemented in a full process model that needs to have a quick response to change forthe purpose of control and optimization.To overcome the difficulties encountered in continuum modelling, i.e. determination ofconstitutive correlations, and particularly the description of the stagnant zone whenrelated to BF, a discrete model based on the coupling approach of discrete elementmethod (DEM) and computational fluid dynamics (CFD) is then employed toinvestigate the gas-solid flow in a model BF at a microscopic level. The results confirmthe effects of variables such as gas flow rate, solid flow rate, particle properties, andmodel types. More importantly, such an approach can generate abundant microscopicinformation such as flow structure (particle velocity, porosity, coordination number) andforce structure, which are of paramount importance to elucidate the gas-solid flowmechanisms, and develop a more comprehensive understanding of BF gas-solid flow,such as the formation mechanism of the stagnant zone. Further, the transient gas-solidflow phenomena, together with the considerations of cohesive zones and hearth liquid,can be predicted.Further, in order to develop understanding of thermal behaviour and elucidate the heattransfer mechanisms occurring in particle-fluid flow system, a new model is proposedby extending the DEM-CFD, and then tested in gas fluidization. The model considersthe three heat transfer modes, and demonstrates its ability in investigating the heattransfer mechanisms, and offers an effective method to elucidate the mechanisms governing the heat transfer in particle-fluid systems at a particle scale. It isrecommended to apply to the study of BF thermal behaviour.
机译:炼铁高炉(BF)仍然是生产液态铁的最重要和最重要的过程。为了实现稳定的熔炉运行和良好的性能,不同层次的数学建模越来越成为一种强大的工具,可以帮助人们更好地理解这种多相流系统,特别是气固流。本文提出了这一领域的研究成果。提出了一种简化的,基于连续性的数学模型,并对其进行了宏观宏观预测。结果表明,该简单模型能够预测固体流的一般特征,包括气体和固体流率的影响以及材料特性。简化的模型可以很容易地在一个完整的过程模型中实现,该模型需要快速响应更改以进行控制和优化。克服连续建模中遇到的困难,即确定本构关系,尤其是相关时停滞区的描述对于BF,然后采用基于离散元方法(DEM)和计算流体动力学(CFD)耦合方法的离散模型,以微观方式研究BF模型中的气固流动。结果证实了变量的影响,例如气体流速,固体流速,颗粒性质和模型类型。更重要的是,这种方法可以生成丰富的微观信息,例如流动结构(颗粒速度,孔隙率,配位数)和力结构,这对于阐明气固流固机理以及对高炉气固形成更全面的了解至关重要。流动,例如停滞区的形成机理。此外,可以预测瞬态气体-固相流动现象,以及对粘性区域和炉膛液体的考虑。进一步,为了加深对热行为的理解并阐明颗粒-流体流动系统中发生的传热机理,建立了一个新模型通过扩展DEM-CFD提出了该方案,然后在气体流化中进行了测试。该模型考虑了三种传热模式,展示了其研究传热机理的能力,并提供了一种有效的方法来阐明在粒子尺度上控制粒子-流体系统中传热的机理。建议将其应用于高炉热行为的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号