首页> 外文OA文献 >Enhanced autocorrelation-based algorithms for filtering airborne lidar data over urban areas
【2h】

Enhanced autocorrelation-based algorithms for filtering airborne lidar data over urban areas

机译:增强的基于自相关的算法,用于过滤市区内的空中激光雷达数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2015 American Society of Civil Engineers. Many existing algorithms for light detection and ranging (lidar) data classification are known to perform reliably; however, the automation of the classification of complex urban scenes is still a challenging problem. In this paper, two classification algorithms based on spatial autocorrelation statistics, such as the Local Moran's I and the Getis-Ord Gi*, are proposed. These autocorrelation statistics are computed over sample urban areas, including complex terrain with diverse building characteristics. The proposed autocorrelation-based algorithms are applied to airborne lidar point clouds over the complex urban areas to generate highly accurate digital elevation models (DEMs) and classify the lidar points as ground and nonground points by using the DEMs. It is also demonstrated that the minimum-based rasterization and slope-based filtering can be integrated to effectively remove outliers from the DEMs. The test results showed that the autocorrelation-based algorithms produce high-level assessment of overall classification accuracy and Cohen's kappa index as well as a low level of total errors in complex urban scenes.
机译:©2015美国土木工程师学会。已知许多现有的用于光检测和测距(激光)数据分类的算法可以可靠地执行。然而,复杂城市场景分类的自动化仍然是一个具有挑战性的问题。本文提出了两种基于空间自相关统计的分类算法,如Local Moran's I和Getis-Ord Gi *。这些自相关统计数据是在样本城市区域(包括具有不同建筑特征的复杂地形)上计算得出的。所提出的基于自相关的算法被应用于复杂市区的空中激光雷达点云,以生成高度精确的数字高程模型(DEM),并通过使用DEM将激光雷达点分为地面点和非地面点。还证明了可以集成基于最小值的栅格化和基于斜率的滤波,以有效地从DEM中去除异常值。测试结果表明,基于自相关的算法可对整体分类准确性和Cohen的kappa指数进行高水平评估,并在复杂的城市场景中产生较低的总误差水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号